skip to main content
research-article

Implantable Closed-Loop Epilepsy Prosthesis: Modeling, Implementation and Validation

Published: 01 June 2012 Publication History

Abstract

In this article, we present an implantable closed-loop epilepsy prosthesis, which is dedicated to automatically detect seizure onsets based on intracerebral electroencephalographic (icEEG) recordings from intracranial electrode contacts and provide an electrical stimulation feedback to the same contacts in order to disrupt these seizures. A novel epileptic seizure detector and a dedicated electrical stimulator were assembled together with common recording electrodes to complete the proposed prosthesis. The seizure detector was implemented in CMOS 0.18-μm by incorporating a new seizure detection algorithm that models time-amplitude and -frequency relationship in icEEG. The detector was validated offline on ten patients with refractory epilepsy and showed excellent performance for early detection of seizures. The electrical stimulator, used for suppressing the developing seizure, is composed of two biphasic channels and was assembled with embedded FPGA in a miniature PCB. The stimulator efficiency was evaluated on cadaveric animal brain tissue in an in vitro morphologic electrical model. Spatial characteristics of the voltage distribution in cortex were assessed in an attempt to identify optimal stimulation parameters required to affect the suspected epileptic focus. The experimental results suggest that lower frequency stimulation parameters cause significant amount of shunting of current through the cerebrospinal fluid; however higher frequency stimulation parameters produce effective spatial voltage distribution with lower stimulation charge.

References

[1]
Agarwal, V. S., Thakor, N. V., Lesser, R. P., Gordon, B., and Nathan, S. 1994. Modeling electrical stimulation of the human cerebral cortex; Engineering advances: New opportunities for biomedical engineers. In Proceedings of the 16th Annual International Conference of the IEEE 1, 185--186.
[2]
Aziz, J. N. Y., Karakiewicz, R., Genov, R., Bardakjian, B. L., Derchansky, M., and Carlen, P. L. 2006. Towards real-time in-implant epileptic seizure prediction. In Proceedings of the IEEE Engineering in Medicine and Biology Conference.
[3]
Blad, N. B. L. 2007. An electrical impedance model for deep brain stimulation of Parkinson’s disease. In Proceedings of the 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography.
[4]
Butson, C. R. and Mcintyre, C. C. 2008. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimul. 1, 1, 7--15.
[5]
Butsona, C. R., Maksa C. B., and Mcintyre, C. C. 2006. Sources and effects of electrode impedance during deep brain stimulation. Clin. Neurophys. 117, 2, 447--454.
[6]
Constandinou, T. G., Georgiou, J., and Toumazou, C. 2008. A partial-current-steering biphasic stimulation driver for vestibular prostheses. IEEE Trans. Biomed. Eng. 2, 2, 106--113.
[7]
Fisher R., Salanova V., Witt T., Worth R., Henry T., Gross R., Oommen K., Osorio I., Nazzaro J., Labar D., Kaplitt M., Sperling M., Sandok E., Neal J., Handforth A., Stern J., Desalles A., Chung S., Shetter A., Bergen D., Bakay R., Henderson J., French J., Baltuch G., Rosenfeld W., Youkilis A., Marks W., Garcia P., Barbaro N., Fountain N., Bazil C., Goodman R., McKhann G., Babu Krishnamurthy K., Papavassiliou S., Epstein C., Pollard J., Tonder L., Grebin J., Coffey R., Graves N., and Sante Study Group. 2010. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51, 5, 899--908.
[8]
Gordon B., Lesser R., Rance N., Hart Jr., J., Webber R., Uematsu S., and Fisher R. S. 1990. Parameters for direct cortical electrical stimulation in the human: Histopathologic confirmation. Electroenchep. Clin. Neurophysiol. 75, 371--377.
[9]
Guerra, G. R., Davalos, R. V., Garcia P. A., Rubinsky, B., and Berger, M. 2005. Heat transfer model to characterize the focal cooling necessary to suppress spontaneous epileptiform activity. In Proceedings of SPIE: Progress in Biomedical Optics and Imaging. 240--246.
[10]
Harrison, R. R. 2008. The design of integrated circuits to observe brain activity. Proc. IEEE 96, 1203--1216.
[11]
Jerome, E. J. 2009. The Treatment of Epilepsy: Overview of Surgical Treatment for Epilepsy 3rd Ed. Wiley-Blackwell. 743--756.
[12]
Kossoff, E. H., Ritzl, E. K., Politsky, J. M., Murro, A. M., Smith, J. R., Duckrow, R. B., Spencer, D. D., and Bergey, G. K. 2004. Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia 45, 12, 1560--1567.
[13]
Kuncel, A. M., Cooper, S. E., Wolgamuth, B. R., Clyde, M. A., Snyder, S. A., Montgomery Jr., E. B., Rezai, A. R., and Grill, W. M. 2006. Clinical response to varying the stimulus parameters in deep brain stimulation foressential tremor. Mov. Disord. 21, 11, 1920--1928.
[14]
Lester, D. B., Rogers, T. D., and Blaha, C. D. 2009. Neuronal pathways involved in deep brain stimulation of the subthalamic nucleus for treatment of Parkinson’s disease. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 3302--3305.
[15]
Manola L., Roelofsen B. H., Holsheimer J., Marani E., and Geelen J. 2005. Modelling motor cortex stimulation for chronic pain control: Electrical potential field, activating functions and responses of simple nerve fibre models. Med Biol Eng Comput. 43, 3, 335--343.
[16]
McIntyre C. C., Mori S., Sherman, D. L., Thakor N. V., and Vitek J. L. 2004. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin. Neurophysiol. 115, 3, 589--595.
[17]
Merrill, D. R., Biksonb, M., and Jefferysc, J. G. R. 2005. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Meth. 141, 171--198.
[18]
Miocinovic, S., Lempka, S. F., Russo, G. S., Maks, C. B., Butson, C. R., Sakaie, K. E., Vitek, J. L., and McIntyre, C. C. 2009. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp. Neurol. 216, 1, 166--176.
[19]
Nandan, M., Sachin, S. S., Myers, S., Ditto, W. L., Khargonekar, P. P., and Carney, P. R. 2010. Support vector machines for seizure detection in an animal model of chronic epilepsy. J. Neural Eng. 7, 036001.
[20]
Nathan, S. S., Sinha, S. R., Gordon, B., Lesser, R. P., and Thakor, N. V. 1993. Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephal. Clinical Neurophys. 86, 3, 183--92.
[21]
Niro, J., Manso, J., Ballina, F., Periolo, S., D’Atellis, C., Ponce, S., Barroso, M., Anessi, C., and Kochen, S. 2007. Development of a neurostimulator for studies of epileptic crisis. J. Phys.: Conf. Ser. 90, 012032.
[22]
Osorio, I. and Frei, M. G. 2009. Real-time detection, quantification, warning, and control of epileptic seizures: The foundations for a scientific epileptology. Epilep. Behav. 16, 391--396.
[23]
Osorio, I., Frei, M. G., Sunderam, S., Giftakis, J., Bhavaraju, N. C., Schaffner, S. F., and Wilkinson, S. B. 2005. Automated seizure abatement in humans using electrical stimulation. Ann. Neurol. 57, 2, 258--268.
[24]
Patel, K., Chua, C. P., Faul, S., and Bleakley, C. J. 2009. Low power real-time seizure detection for ambulatory EEG. In Proceedings of the International Conference on PCTHealth - Pervasive Health. X 1--7.
[25]
Polychronaki, G. E., Ktonas, P. Y., Gatzonis, S., Siatouni, A., Asvestas, P. A., Tsekou, H., Sakas, D., and Nikita, K. S. 2010. Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection. J. Neural Eng. 7, 046007.
[26]
Raghunathan, S., Gupta, S. K., Ward, M. P., Worth, R. M., Roy, K., and Irazoqui, P. P. 2009. The design and hardware implementation of a low-power real-time seizure detection algorithm. J. Neural Eng. 6, 5, 056005.
[27]
Rayport, M. and Sandler, B. 1969. Six-electrode method for the measurement of the passive electrical properties of brain envelopes. Med. Biol. Eng. 7, 3, 321--324.
[28]
Reese, T. J. 2009. Vagus nerve stimulation: A proven therapy for treatment of epilepsy strives to improve efficacy and expand applications. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 4631--4634.
[29]
Rubinstein, J. T., Miller, C. A., Mino, H., and Abbas, P. J. 2001. Analysis of monophasic and biphasic electrical stimulation of nerve. IEEE Trans. Biomed. Eng. 48, 10, 1065--1070.
[30]
Rychlicki, F., Zamponi, N., Trignani, R., Ricciuti, R. A., Iacoangeli, M., and Scerrati, M. 2006. Vagus nerve stimulation: Clinical experience in drug-resistant pediatric epileptic patients. Seizure. 15, 7, 483--490.
[31]
Salam, M. T., Sawan, M., Nguyen, D. K., and Hamoui, A. A. 2009. Epileptic low-voltage fast-activity seizure-onset detector. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BIOCAS). 169--172.
[32]
Salam, M. T., Sawan, M., and Nguyen, D. K. 2010a. A low-power implantable device for epileptic seizure detection and neurostimulation. IEEE-BIOCAS.
[33]
Salam, M. T., Sawan, M., and Nguyen, D. K. 2010b. Epileptic seizure onset detection prior to clinical manifestation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 6210--6213.
[34]
Salam, M. T., Sawan, M., and Nguyen, D. K. 2010c. Low-power implantable device for onset detection and subsequent treatment of epileptic seizures: A review. J. Healthc. Eng. 1, 2, 169--184.
[35]
Salam, M. T., Sawan, M., and Nguyen, D. K. 2012. A low-power miniaturized seizure detector with responsive neurostimulation for the treatment of refractory epilepsy. J. Neural Eng. To appear.
[36]
Schachter, S. C., Guttag, J., Schiff, S. J., Schomer, D. L., and Summit Contributors. 2009. Advances in the application of technology to epilepsy: The CIMIT/NIO epilepsy innovation summit. Epil. Behav. 16, 3--46.
[37]
Sethi, N., Labar, D., Ponticello, L., Torgovnick, J., Sethi, P., and Arsura, E. 2008. Treatment of medically refractory epilepsy: A review of vagus nerve stimulator. Internet J. Neurol. 9, 1, X.
[38]
Skarpaas, T. L. and Morrell, M. J. 2009. Intracranial stimulation therapy for epilepsy. Neurotherapeutics 6, 2, 238--243.
[39]
Spencer, S, S., Nguyen, D. K., and Duckrow, R. B. 2009. The Treatment of Epilepsy: Invasive EEG in Presurgical Evaluation of Epilepsy 3rd Ed. Wiley-Blackwell. 767--798.
[40]
Sramka, M. and Chkhenkeli, S. A. 1990. Clinical experience in intraoperational determination of brain inhibitory structures and application of implanted neurostimulators in epilepsy. Stereotact. Funct. Neurosurg. 54--55, 56--59.
[41]
Stein, A. G., Eder, H. G., Blum D. E., Drachev, A., and Fisher, R. S. 2000. An automated drug delivery system for focal epilepsy. Epilep. Res. 39, 2, 103--114.
[42]
Sun, F. T., Morrell, M. J., and Wharen Jr., R. E. 2008. Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 5, 1, 68--74.
[43]
Verma, N., Shoeb, A., Bohorquez, J., Dawson, J., Guttag, J., and Chandrakasan, A. P. 2010. A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid-State Circ. 45, 4, 804--816.
[44]
Zandi, A. S., Dumont, A. G., Javidan, M., and Tafreshi, R. 2009. An entropy-based approach to predict seizures in temporal lobe epilepsy using scalp EEG. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering Future Biomedicine (EMBC). 228--231.

Cited By

View all
  • (2021)Just In TimeProceedings of the ACM on Human-Computer Interaction10.1145/34491875:CSCW1(1-24)Online publication date: 22-Apr-2021
  • (2018)A Rodent Flash FPGA Control System for Closed-loop Optogenetic Stimulation to Suppress Seizures2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)10.1109/NANO.2018.8626342(1-4)Online publication date: Jul-2018

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 8, Issue 2
Special Issue on Implantable Electronics
June 2012
94 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/2180878
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 01 June 2012
Accepted: 01 September 2011
Revised: 01 August 2011
Received: 01 March 2011
Published in JETC Volume 8, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Neural signal recording
  2. current stimulation
  3. low-power CMOS circuits
  4. voltage distribution in brain tissues

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Just In TimeProceedings of the ACM on Human-Computer Interaction10.1145/34491875:CSCW1(1-24)Online publication date: 22-Apr-2021
  • (2018)A Rodent Flash FPGA Control System for Closed-loop Optogenetic Stimulation to Suppress Seizures2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)10.1109/NANO.2018.8626342(1-4)Online publication date: Jul-2018

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media