skip to main content
research-article

Underwater rigid body dynamics

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

We show that the motion of rigid bodies under water can be realistically simulated by replacing the usual inertia tensor and scalar mass by the so-called Kirchhoff tensor. This allows us to model fluid-body interaction without simulating the surrounding fluid at all. We explain some of the phenomena that arise and compare our results against real experiments. It turns out that many real scenarios (sinking bodies, balloons) can be matched using a single, hand-tuned scaling parameter. We describe how to integrate our method into an existing physics engine, which makes underwater rigid body dynamics run in real time.

Skip Supplemental Material Section

Supplemental Material

tp217_12.mp4

mp4

18.7 MB

References

  1. Anderson Jr, J. D. 2005. Ludwig Prandtl's Boundary Layer. Physics Today, December.Google ScholarGoogle Scholar
  2. Baraff, D. 1993. Non-penetrating rigid body simulation. In State of the Art Reports, Eurographics.Google ScholarGoogle Scholar
  3. Becker, M., Tessendorf, H., and Teschner, M. 2008. Direct forcing for Lagrangian rigid-fluid coupling. IEEE Trans. Vis. Comput. Graphics 15, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bou-Rabee, N. 2007. Hamilton-Pontryagin Integrators on Lie Groups. PhD thesis, Caltech.Google ScholarGoogle Scholar
  5. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid. ACM Trans. Graph. 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Field, S., Klaus, M., and Moore, M. 1997. Chaotic dynamics of falling disks. Nature 388, July.Google ScholarGoogle Scholar
  7. Holmes, P., Jenkins, J., and Leonard, N. E. 1998. Dynamics of the Kirchhoff Equations I: Coincident Centers of Gravity and Buoyancy. Physica D 118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kallay, M. 2006. Computing the moment of inertia of a solid defined by a triangle mesh. journal of graphics, gpu, and game tools 11, 2.Google ScholarGoogle Scholar
  9. Kanso, E., Marsden, J. E., Rowley, C. W., Melli-huber, J. B., and Newton, C. P. K. 2005. Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Science 15, 255--289.Google ScholarGoogle ScholarCross RefCross Ref
  10. Kirchhoff, G. R. 1870. {On the motion of a solid of revolution in a fluid}. Journal für die Reine und Angewandte Mathematik 71. (in German).Google ScholarGoogle Scholar
  11. Kobilarov, M., Crane, K., and Desbrun, M. 2009. Lie group integrators for animation and control of vehicles. ACM Trans. Graph. 28, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lamb, H. 1895. Hydrodynamics. Cambridge Univ Pr.Google ScholarGoogle Scholar
  13. Lee, T., Leok, M., and Mcclamroch, N. H. 2009. Dynamics of connected rigid bodies in a perfect fluid. In Proc. ACC 2009, {Online}. Available: http://arxiv.org/abs/0809.1488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Nair, S., and Kanso, E. 2007. Hydrodynamically coupled rigid bodies. Journal of Fluid Mechanics 592, 393--411.Google ScholarGoogle ScholarCross RefCross Ref
  15. Newman, J. N. 1977. Marine hydrodynamics. MIT Press.Google ScholarGoogle Scholar
  16. Nordkvist, N., and Sanyal, A. K. 2010. A Lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics. In Proc. IEEE CDC.Google ScholarGoogle Scholar
  17. Ozgen, O., Kallmann, M., Ramirez, L. E., and Coimbra, C. F. 2010. Underwater cloth simulation with fractional derivatives. ACM Trans. Graph. 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pesavento, U., and Wang, Z. J. 2004. Falling paper: Navier-stokes solutions, model of fluid forces, and center of mass elevation. Phys. Rev. Lett. 93, 14, 144501.Google ScholarGoogle ScholarCross RefCross Ref
  19. Saffman, P. G. 1992. Vortex Dynamics. Cambridge Univ Pr.Google ScholarGoogle Scholar
  20. Shashikanth, B. N., Sheshmani, A., David, S., and Jerrold, K. 2008. Hamiltonian structure for a neutrally buoyant rigid body interacting with N vortex rings of arbitrary shape: the case of arbitrary smooth body shape. 37--64.Google ScholarGoogle Scholar
  21. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. Proc. ACM/SIGGRAPH Conf. 25, 3, 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Van Oosterom, a., and Strackee, J. 1983. The Solid Angle of a Plane Triangle. IEEE Trans. Biomed. Eng. BME-30, 2.Google ScholarGoogle ScholarCross RefCross Ref
  23. Vankerschaver, J., Kanso, E., and Marsden, J. 2009. The geometry and dynamics of interacting rigid bodies and point vortices. The Journal of Geometric Mechanics 1, 2, 223--266.Google ScholarGoogle ScholarCross RefCross Ref
  24. Weissmann, S., Gunn, C., Brinkmann, P., Hoffmann, T., and Pinkall, U. 2009. jReality: a java library for real-time interactive 3D graphics and audio. In Proc. ACM/MM Conf. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Zhong, H., Chen, S., and Lee, C. 2011. Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids 23, 1.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Underwater rigid body dynamics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 4
          July 2012
          935 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2185520
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2012
          Published in tog Volume 31, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader