skip to main content
research-article

The implication problem of data dependencies over SQL table definitions: Axiomatic, algorithmic and logical characterizations

Published: 04 June 2012 Publication History

Abstract

We investigate the implication problem for classes of data dependencies over SQL table definitions. Under Zaniolo's “no information” interpretation of null markers we establish an axiomatization and algorithms to decide the implication problem for the combined class of functional and multivalued dependencies in the presence of NOT NULL constraints. The resulting theory subsumes three previously orthogonal frameworks. We further show that the implication problem of this class is equivalent to that in a propositional fragment of Schaerf and Cadoli's [1995] family of para-consistent S-3 logics. In particular, S is the set of variables that correspond to attributes declared NOT NULL. We also show how our equivalences for multivalued dependencies can be extended to Delobel's class of full first-order hierarchical decompositions, and the equivalences for functional dependencies can be extended to arbitrary Boolean dependencies. These dualities allow us to transfer several findings from the propositional fragments to the corresponding classes of data dependencies, and vice versa. We show that our results also apply to Codd's null interpretation “value unknown at present”, but not to Imielinski's [1989] or-relations utilizing Levene and Loizou's weak possible world semantics [Levene and Loizou 1998]. Our findings establish NOT NULL constraints as an effective mechanism to balance not only the certainty in database relations but also the expressiveness with the efficiency of entailment relations. They also control the degree by which the implication of data dependencies over total relations is soundly approximated in SQL table definitions.

Supplementary Material

hartmann (a13-hartmann-apndx.pdf)
Supplemental movie, appendix, image and software files for, The implication problem of data dependencies over SQL table definitions: Axiomatic, algorithmic and logical characterizations.

References

[1]
Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley, Boston, MA.
[2]
Antova, L., Koch, C., and Olteanu, D. 2009. 10(106) worlds and beyond: Efficient representation and processing of incomplete information. VLDB J. 18, 5, 1021--1040.
[3]
Arenas, M., Barcelo, P., Libkin, L., and Murlak, F. 2010. Relational and XML Data Exchange. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.
[4]
Arenas, M., Fan, W., and Libkin, L. 2008. On the complexity of verifying consistency of XML specifications. SIAM J. Comput. 38, 3, 841--880.
[5]
Arenas, M. and Libkin, L. 2004. A normal form for XML documents. ACM Trans. Datab. Syst. 29, 1, 195--232.
[6]
Arenas, M. and Libkin, L. 2005. An information-theoretic approach to normal forms for relational and XML data. J. ACM 52, 2, 246--283.
[7]
Armstrong, W. W. 1974. Dependency structures of database relationships. Inf. Process. 74, 580--583.
[8]
Atzeni, P. and Morfuni, N. 1986. Functional dependencies and constraints on null values in database relations. Inf. Control 70, 1, 1--31.
[9]
Beeri, C. 1980. On the membership problem for functional and multivalued dependencies in relational databases. ACM Trans. Datab. Syst. 5, 3, 241--259.
[10]
Beeri, C. and Bernstein, P. 1979. Computational problems related to the design of normal form relational schemas. ACM Trans. Datab. Syst. 4, 1, 30--59.
[11]
Beeri, C., Bernstein, P. A., and Goodman, N. 1978. A sophisticate's introduction to database normalization theory. In Proceedings of the 4th International Conference on Very Large Databases (VLDB). IEEE Computer Society, 113--124.
[12]
Beeri, C., Dowd, M., Fagin, R., and Statman, R. 1984. On the structure of Armstrong relations for functional dependencies. J. ACM 31, 1, 30--46.
[13]
Beeri, C., Fagin, R., and Howard, J. H. 1977. A complete axiomatization for functional and multivalued dependencies in database relations. In Proceedings of the SIGMOD International Conference on Management of Data. ACM, 47--61.
[14]
Beeri, C., Fagin, R., Maier, D., and Yannakakis, M. 1983. On the desirability of acyclic database schemes. J. ACM 30, 3, 479--513.
[15]
Beeri, C. and Vardi, M. 1984. Formal systems for tuple and equality generating dependencies. SIAM J. Comput. 13, 1, 76--98.
[16]
Bernstein, P. 1976. Synthesizing third normal form relations from functional dependencies. ACM Trans. Datab. Syst. 1, 4, 277--298.
[17]
Biskup, J. 1978. On the complementation rule for multivalued dependencies. Acta Inf. 10, 297--305.
[18]
Biskup, J. 2009. Security in Computing Systems. Springer.
[19]
Biskup, J., Dayal, U., and Bernstein, P. 1979. Synthesizing independent database schemas. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD). ACM, 143--151.
[20]
Biskup, J., Embley, D., and Lochner, J. 2008. Reducing inference control to access control for normalized database schemas. Inf. Proc. Letters 106, 1, 8--12.
[21]
Biskup, J. and Link, S. 2011. Appropriate inferences of data dependencies in relational databases. Ann. Math. Artif. Intell. 63, 3-4, 213--255.
[22]
Biskup, J. and Weibert, T. 2008. Keeping secrets in incomplete databases. Int. J. Inf. Sec. 7, 3, 199--217.
[23]
Bojanczyk, M., Muscholl, A., Schwentick, T., and Segoufin, L. 2009. Two-Variable logic on data trees and XML reasoning. J. ACM 56, 3, Article 13.
[24]
Börger, E., Grädel, E., and Gurevich, Y. 1997. The Classical Decision Problem. Springer.
[25]
Cadoli, M. and Schaerf, M. 1996. On the complexity of entailment in propositional multivalued logics. Ann. Math. Artif. Intell. 18, 1, 29--50.
[26]
Cali, A., Calvanese, D., De Giacomo, G., and Lenzerini, M. 2004. Data integration under integrity constraints. Inf. Syst. 29, 2, 147--163.
[27]
Casanova, M., Fagin, R., and Papadimitriou, C. 1984. Inclusion dependencies and their interaction with functional dependencies. J. Comput. System Sci. 28, 1, 29--59.
[28]
Chandra, A., Lewis, H., and Makowsky, J. 1981. Embedded implicational dependencies and their inference problem. In Proceedings of the 13th Annual ACM Symposium on Theory of Computing (STOC). ACM, 342--354.
[29]
Chomicki, J. 2007. Consistent query answering: Five easy pieces. In Proceedings of the 11th International Conference on Database Theory (ICDT). Lecture Notes in Computer Science Series, vol. 4353, Springer, 1--17.
[30]
Codd, E. F. 1970. A relational model of data for large shared data banks. Comm. ACM 13, 6, 377--387.
[31]
Codd, E. F. 1975. Understanding relations. ACM SIGFIDET FDT Bull. 7, 3-4, 23--28.
[32]
Codd, E. F. 1979. Extending the database relational model to capture more meaning. ACM Trans. Datab. Syst. 4, 4, 397--434.
[33]
Cresswell, M. and Hughes, G. 1996. A New Introduction to Modal Logic. Routledge, London and New York.
[34]
Date, C. and Darwen, H. 1997. A Guide to the SQL Standard. Addison-Wesley Professional, Reading, MA.
[35]
Davidson, S., Fan, W., and Hara, C. 2007. Propagating XML constraints to relations. J. Comput. Syst. Sci. 73, 3, 316--361.
[36]
Davis, M. and Putnam, H. 1960. A computing procedure for quantification theory. J. ACM 7, 201--215.
[37]
De Marchi, F., Lopes, S., Petit, J.-M., and Toumani, F. 2003. Analysis of existing databases at the logical level: The DBA companion project. SIGMOD Rec. 32, 1, 47--52.
[38]
De Marchi, F. and Petit, J.-M. 2007. Semantic sampling of existing databases through informative Armstrong databases. Inf. Syst. 32, 3, 446--457.
[39]
Delobel, C. 1978. Normalization and hierarchical dependencies in the relational data model. ACM Trans. Datab. Syst. 3, 3, 201--222.
[40]
Delobel, C. and Adiba, M. 1985. Relational Database Systems. Elsevier North Holland, New York.
[41]
Demetrovics, J., Katona, G., Miklos, D., and Thalheim, B. 2006. On the number of independent functional dependencies. In Proceedings of the 4th International Symposium on Foundations of Information and Knowledge Bases (FoIKS). Lecture Notes in Computer Science, vol. 3861, Springer, 83--91.
[42]
Deutsch, A., Ludäscher, B., and Nash, A. 2007. Rewriting queries using views with access patterns under integrity constraints. Theor. Comput. Sci. 371, 3, 200--226.
[43]
Deutsch, A., Popa, L., and Tannen, V. 2006. Query reformulation with constraints. SIGMOD Rec. 35, 1, 65--73.
[44]
Diederich, J. and Milton, J. 1988. New methods and fast algorithms for database normalization. ACM Trans. Datab. Syst. 13, 3, 339--365.
[45]
Dowling, W. and Gallier, J. 1984. Linear-time algorithms for testing the satisfiability of propositional Horn formulae. J. Log. Program. 1, 3, 267--284.
[46]
Engel, K. 1997. Sperner Theory. Cambridge University Press, Cambridge, UK.
[47]
Fagin, R. 1977a. Functional dependencies in a relational data base and propositional logic. IBM J. Res. Devel. 21, 6, 543--544.
[48]
Fagin, R. 1977b. Multivalued dependencies and a new normal form for relational databases. ACM Trans. Datab. Syst. 2, 3, 262--278.
[49]
Fagin, R. 1982a. Armstrong databases. Tech. rep. RJ3440(40926), IBM Research Laboratory, San Jose, CA.
[50]
Fagin, R. 1982b. Horn clauses and database dependencies. J. ACM 29, 4, 952--985.
[51]
Fagin, R., Kolaitis, P., Miller, R., and Popa, L. 2005. Data exchange: Semantics and query answering. Theor. Comput. Sci. 336, 1, 89--124.
[52]
Fagin, R., Kolaitis, P., Popa, L., and Tan, W. 2009. Reverse data exchange: coping with nulls. In Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS). ACM, 23--32.
[53]
Fagin, R. and Vardi, M. 1986. The theory of data dependencies - A survey. In Mathematics of Information Processing. Proceedings of Symposia in Applied Mathematics Series, vol. 34, American Mathematical Society, 19--72.
[54]
Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. 2008. Conditional functional dependencies for capturing data inconsistencies. ACM Trans. Datab. Syst. 33, 2, Article 6.
[55]
Farkas, C. and Jajodia, S. 2002. The inference problem: a survey. SIGKDD Explor. 4, 2, 6--11.
[56]
Ferrarotti, F., Hartmann, S., Köhler, H., Link, S., and Vincent, M. 2011. The Boyce-Codd-Heath normal form for SQL. In Proceedings of the 18th International Workshop on Logic, Language, Information and Computation (WoLLIC). Lecture Notes in Artificial Intelligence, vol. 6642, Springer, 110--122.
[57]
Galil, Z. 1982. An almost linear-time algorithm for computing a dependency basis in a relational database. J. ACM 29, 1, 96--102.
[58]
Gottlob, G., Pichler, R., and Wei, F. 2010. Tractable database design and datalog abduction through bounded treewidth. Inf. Syst. 35, 3, 278--298.
[59]
Gottlob, G. and Zicari, R. 1988. Closed world databases opened through null values. In Proceedings of the 14th International Conference on Very Large Databases (VLDB). IEEE Computer Society, 50--61.
[60]
Grahne, G. 1984. Dependency satisfaction in databases with incomplete information. In Proceedings of the 10th International Conference on Very Large Databases (VLDB). IEEE Computer Society, 37--45.
[61]
Grahne, G. and Räihä, K.-J. 1983. Database decomposition into Fourth Normal Form. In Proceedings of the 9th International Conference on Very Large Databases (VLDB). IEEE Computer Society, 186--196.
[62]
Grant, J. 1977. Null values in a relational data base. Inf. Process. Lett. 6, 5, 156--157.
[63]
Hagihara, K., Ito, M., Taniguchi, K., and Kasami, T. 1979. Decision problems for multivalued dependencies in relational databases. SIAM J. Comput. 8, 2, 247--264.
[64]
Hartmann, S., Kirchberg, M., and Link, S. 2012. Design by example for SQL table definitions with functional dependencies. VLDB J. 21, 1, 121--144.
[65]
Hartmann, S., Leck, U., and Link, S. 2011. On Codd families of keys over incomplete relations. Comput. J. 54, 7, 1166--1180.
[66]
Hartmann, S. and Link, S. 2008. Characterising nested database dependencies by fragments of propositional logic. Ann. Pure Appl. Logic 152, 1-3, 84--106.
[67]
Hartmann, S. and Link, S. 2009. Efficient reasoning about a robust XML key fragment. ACM Trans. Datab. Syst. 34, 2, Article 10.
[68]
Hartmann, S. and Link, S. 2010a. Numerical constraints on XML data. Inf. Comput. 208, 5, 521--544.
[69]
Hartmann, S. and Link, S. 2010b. When data dependencies over SQL tables meet the Logics of Paradox and S-3. In Proceedings of the 29th ACM SIGMOD-SIGART-SIGACT Symposium on Principles of Database Systems (PODS). ACM, 317--326.
[70]
Imielinksi, T. 1989. Incomplete information in logical databases. IEEE Data Eng. Bull. 12, 2, 29--40.
[71]
Imielinski, T. and Lipski Jr., W. 1984. Incomplete information in relational databases. J. ACM 31, 4, 761--791.
[72]
Imielinski, T., Van der Meyden, R., and Vadaparty, K. 1995. Complexity tailored design: a new design methodology for databases with incomplete information. J. Comput. Syst. Sci. 51, 3, 405--432.
[73]
Jensen, C., Snodgrass, R., and Soo, M. 1996. Extending existing dependency theory to temporal databases. IEEE Trans. Knowl. Data Engin. 8, 4, 563--582.
[74]
Khardon, R., Mannila, H., and Roth, D. 1999. Reasoning with examples: Propositional formulae and database dependencies. Acta Inf. 36, 267--286.
[75]
Kleene, S. 1952. An Introduction to Metamathematics. North Holland, Amsterdam, The Netherlands.
[76]
Klug, A. and Price, R. 1982. Determining view dependencies using tableaux. ACM Trans. Datab. Syst. 7, 3, 361--380.
[77]
Köhler, H. and Link, S. 2010. Armstrong axioms and Boyce-Codd-Heath normal form under bag semantics. Inf. Process. Lett. 110, 16, 717--724.
[78]
Kolahi, S. 2007. Dependency-Preserving normalization of relational and XML data. J. Comput. Syst. Sci. 73, 4, 636--647.
[79]
Kolahi, S. and Libkin, L. 2010. An information-theoretic analysis of worst-case redundancy in database design. ACM Trans. Datab. Syst. 35, 1, Article 5.
[80]
Langeveldt, W. and Link, S. 2010. Empirical evidence for the usefulness of Armstrong relations on the acquisition of meaningful functional dependencies. Inf. Syst. 35, 3, 352--374.
[81]
Levene, M. and Loizou, G. 1997. Null inclusion dependencies in relational databases. Inf. Comput. 136, 2, 67--108.
[82]
Levene, M. and Loizou, G. 1998. Axiomatisation of functional dependencies in incomplete relations. Theor. Comput. Sci. 206, 1-2, 283--300.
[83]
Levene, M. and Loizou, G. 1999. Database design for incomplete relations. ACM Trans. Datab. Syst. 24, 1, 80--125.
[84]
Levesque, H. 1989. A knowledge-level account of abduction. In Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann, 1061--1067.
[85]
Libkin, L. and Wong, L. 1996. Semantic representations and query languages for Or-sets. J. Comput. Syst. Sci. 52, 1, 125--142.
[86]
Lien, E. 1982. On the equivalence of database models. J. ACM 29, 2, 333--362.
[87]
Link, S. 2008a. Charting the completeness frontier of inference systems for multivalued dependencies. Acta Inf. 45, 7-8, 565--591.
[88]
Link, S. 2008b. On the implication of multivalued dependencies in partial database relations. Int. J. Found. Comput. Sci. 19, 3, 691--715.
[89]
Link, S. 2012. Characterizing multivalued dependency implication over undetermined universes. J. Comput. Syst. Sci. 78, 4, 1026--1044.
[90]
Makinouchi, A. 1977. A consideration on normal form of not-necessarily-normalized relation in the relational data model. In Proceedings of the 3rd International Conference on Very Large Databases (VLDB). IEEE Computer Society, 447--453.
[91]
Makowsky, J. and Vardi, M. 1986. On the expressive power of data dependencies. Acta Inf. 23, 3, 231--244.
[92]
Malvestuto, F. 1992. A unique formal system for binary decompositions of database relations, probability distributions, and graphs. Inf. Sci. 59, 1-2, 21--52.
[93]
Mannila, H. and Räihä, K.-J. 1986. Design by example: An application of Armstrong relations. J. Comput. Syst. Sci. 33, 2, 126--141.
[94]
Mannila, H. and Räihä, K.-J. 1994. Algorithms for inferring functional dependencies from relations. Data Knowl. Engin. 12, 1, 83--99.
[95]
Marquis, P. and Porquet, N. 2003. Resource-Bounded paraconsistent inference. Ann. Math. Artif. Intell. 39, 349--384.
[96]
Niepert, M., Van Gucht, D., and Gyssens, M. 2010. Logical and algorithmic properties of stable conditional independence. Int. J. Approx. Reason. 51, 5, 531--543.
[97]
Paredaens, J., De Bra, P., Gyssens, M., and Van Gucht, D. 1989. The Structure of the Relational Database Model. Springer.
[98]
Paulley, G. 2000. Exploiting functional dependence in query optimization. Tech. rep. UW-CS-2000-11, University of Waterloo, Waterloo, Canada.
[99]
Paulley, G. and Larson, P.-A. 1994. Exploiting uniqueness in query optimization. In Proceedings of the 10th International Conference on Data Engineering (ICDE). IEEE Computer Society, 68--79.
[100]
Petrov, S. Y. 1989. Finite axiomatization of languages for representation of system properties: Axiomatization of dependencies. Inf. Sci. 47, 339--372.
[101]
Priest, G. 1979. Logic of paradox. J. Philos. Logic 8, 219--241.
[102]
Reiter, R. 1978. On closed world data bases. In Logic and Data Bases, Plenum Press, New York, 119--140.
[103]
Robinson, J. 1965. A machine oriented logic based on resolution principle. J. ACM 12, 397--415.
[104]
Sagiv, Y. 1980. An algorithm for inferring multivalued dependencies with an application to propositional logic. J. ACM 27, 2, 250--262.
[105]
Sagiv, Y., Delobel, C., Parker Jr., D. S., and Fagin, R. 1981. An equivalence between relational database dependencies and a fragment of propositional logic. J. ACM 28, 3, 435--453.
[106]
Sagiv, Y., Delobel, C., Parker Jr., D. S., and Fagin, R. 1987. Correction to “An equivalence between relational database dependencies and a fragment of propositional logic”. J. ACM 34, 4, 1016--1018.
[107]
Saxton, L. and Tang, X. 2004. Tree multivalued dependencies for XML datasets. In Proceedings of the 5th International Conference on Advances in Web-Age Information Management (WAIM). Lecture Notes in Computer Science, vol. 3129, Springer, 357--367.
[108]
Schaerf, M. and Cadoli, M. 1995. Tractable reasoning via approximation. Artif. Intell. 74, 249--310.
[109]
Silva, A. and Melkanoff, M. 1979. A method for helping discover the dependencies of a relation. In Proceedings of the Workshop on Formal Bases for Data Bases - Advances in Data Base Theory. Plemum Press, 115--133.
[110]
Sözat, M. and Yazici, A. 2001. A complete axiomatization for fuzzy functional and multivalued dependencies in fuzzy database relations. ACM Fuzzy Sets Syst. 117, 2, 161--181.
[111]
Tari, Z., Stokes, J., and Spaccapietra, S. 1997. Object normal forms and dependency constraints for object-oriented schemata. ACM Trans. Datab. Syst. 22, 513--569.
[112]
Thalheim, B. 2000. Entity-Relationship Modeling. Springer.
[113]
Toman, D. and Weddell, G. 2008. On keys and functional dependencies as first-class citizens in description logics. J. Autom. Reason. 40, 2-3, 117--132.
[114]
Vadaparty, K. and Naqvi, S. 1995. Using constraints for efficient query processing in nondeterministic databases. IEEE Trans. Knowl. Data Engin. 7, 6, 850--864.
[115]
Vardi, M. 1982. The complexity of relational query languages. In Proceedings of the 14th ACM Symposium on Theory of Computing (STOC). ACM, 137--146.
[116]
Vincent, M. 1999. Semantic foundations of 4NF in relational database design. Acta Inf. 36, 3, 173--213.
[117]
Vincent, M. and Liu, J. 2003. Multivalued dependencies and a 4NF for XML. In Proceedings of the 15th International Conference on Advanced Information Systems Engineering (CaISE). Lecture Notes in Computer Science, vol. 2681, Springer, 14--29.
[118]
Vincent, M., Liu, J., and Liu, C. 2004. Strong functional dependencies and their application to normal forms in XML. ACM Trans. Datab. Syst. 29, 3, 445--462.
[119]
Weddell, G. 1992. Reasoning about functional dependencies generalized for semantic data models. ACM Trans. Datab. Syst. 17, 1, 32--64.
[120]
Wijsen, J. 1999. Temporal FDs on complex objects. ACM Trans. Datab. Syst. 24, 1, 127--176.
[121]
Wong, S., Butz, C., and Wu, D. 2000. On the implication problem for probabilistic conditional independency. Trans. Syst. Man Cybernet. A: Syst. Hum. 30, 6, 785--805.
[122]
Wu, M. 1992. The practical need for fourth normal form. In Proceedings of the 23rd ACM SIGCSE Technical Symposium on Computer Science Education. ACM, 19--23.
[123]
Zaniolo, C. 1980. Mixed transitivity for functional and multivalued dependencies in database relations. Inf. Process. Lett. 10, 1, 32--34.
[124]
Zaniolo, C. 1984. Database relations with null values. J. Comput. Syst. Sci. 28, 1, 142--166.
[125]
Ziarko, W. 1991. The discovery, analysis, and representation of data dependencies in databases, In Knowledge Discovery in Databases, MIT Press, Cambridge, MA, 195--212.

Cited By

View all
  • (2025)Approximate integrity constraints in incomplete databases with limited domainsAnnals of Mathematics and Artificial Intelligence10.1007/s10472-025-09967-9Online publication date: 10-Feb-2025
  • (2024)Mixed Covers of Keys and Functional Dependencies for Maintaining the Integrity of Data under UpdatesProceedings of the VLDB Endowment10.14778/3654621.365462617:7(1578-1590)Online publication date: 1-Mar-2024
  • (2023)Controlling entity integrity with key setsJournal of Computer and System Sciences10.1016/j.jcss.2023.04.004136(195-219)Online publication date: Sep-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Database Systems
ACM Transactions on Database Systems  Volume 37, Issue 2
May 2012
326 pages
ISSN:0362-5915
EISSN:1557-4644
DOI:10.1145/2188349
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 June 2012
Accepted: 01 January 2012
Revised: 01 October 2011
Received: 01 January 2011
Published in TODS Volume 37, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Axiomatization
  2. Boolean dependency
  3. Boolean logic
  4. S-3 logic
  5. SQL
  6. functional dependency
  7. implication
  8. incomplete information
  9. logic of paradox
  10. multivalued dependency

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)32
  • Downloads (Last 6 weeks)4
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Approximate integrity constraints in incomplete databases with limited domainsAnnals of Mathematics and Artificial Intelligence10.1007/s10472-025-09967-9Online publication date: 10-Feb-2025
  • (2024)Mixed Covers of Keys and Functional Dependencies for Maintaining the Integrity of Data under UpdatesProceedings of the VLDB Endowment10.14778/3654621.365462617:7(1578-1590)Online publication date: 1-Mar-2024
  • (2023)Controlling entity integrity with key setsJournal of Computer and System Sciences10.1016/j.jcss.2023.04.004136(195-219)Online publication date: Sep-2023
  • (2023)Cardinality constraints and functional dependencies in SQL: Taming data redundancy in logical database designInformation Systems10.1016/j.is.2023.102208115(102208)Online publication date: May-2023
  • (2023)Entity integrity management under data volume, variety and veracityKnowledge and Information Systems10.1007/s10115-022-01814-165:7(2895-2934)Online publication date: 1-Jul-2023
  • (2022)Strongly Possible Functional Dependencies for SQLActa Cybernetica10.14232/actacyb.287523Online publication date: 21-Jan-2022
  • (2022)Object Normal Form, Fourth Normal Form and Their Application to Database SecurityConceptual Modeling10.1007/978-3-031-17995-2_25(349-364)Online publication date: 17-Oct-2022
  • (2021)Possible Keys and Functional DependenciesJournal on Data Semantics10.1007/s13740-021-00135-w10:3-4(327-366)Online publication date: 14-Aug-2021
  • (2021)Modelling Entity Integrity for Semi-structured Big DataDatabase Systems for Advanced Applications10.1007/978-3-030-73194-6_9(113-120)Online publication date: 6-Apr-2021
  • (2020)Toward an Axiomatization of Strongly Possible Functional DependenciesVietnam Journal of Computer Science10.1142/S2196888821500056(1-19)Online publication date: 2-Oct-2020
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media