skip to main content
10.1145/2213977.2214003acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Solution of the propeller conjecture in R3

Published:19 May 2012Publication History

ABSTRACT

It is shown that every measurable partition {A1,..., Ak} of R3 satisfies: ∑i=1k|intAi xe-1/2|x|22dx|22≤ 9π2. Let P1,P2,P3 be the partition of R2 into 120o sectors centered at the origin. The bound (1) is sharp, with equality holding if Ai=Pi x R for i∈ {1,2,3} and Ai=∅ for i∈ {4,...,k}. This settles positively the 3-dimensional Propeller Conjecture of Khot and Naor (FOCS 2008). The proof of (1) reduces the problem to a finite set of numerical inequalities which are then verified with full rigor in a computer-assisted fashion. The main consequence (and motivation) of (1) is complexity-theoretic: the Unique Games hardness threshold of the Kernel Clustering problem with 4 x 4 centered and spherical hypothesis matrix equals 2π/3.

Skip Supplemental Material Section

Supplemental Material

stoc_4b_1.mp4

mp4

113.3 MB

References

  1. K. Appel and W. Haken. Every planar map is four colorable. I. Discharging. Illinois J. Math., 21(3):429--490, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  2. K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. II. Reducibility. Illinois J. Math., 21(3):491--567, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  3. K. Ball. Cube slicing in Rn. Proc. Amer. Math. Soc., 97(3):465--473, 1986.Google ScholarGoogle Scholar
  4. K. Ball. Mahler's conjecture and wavelets. Discrete Comput. Geom., 13(3--4):271--277, 1995.Google ScholarGoogle Scholar
  5. F. Barthe and A. Koldobsky. Extremal slabs in the cube and the Laplace transform. Adv. Math., 174(1):89--114, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  6. F. Barthe and A. Naor. Hyperplane projections of the unit ball of lnp. Discrete Comput. Geom., 27(2):215--226, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Borell. Geometric bounds on the Ornstein-Uhlenbeck velocity process. Z. Wahrsch. Verw. Gebiete, 70(1):1--13, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor. The Grothendieck constant is strictly smaller than Krivine's bound. An extended abstract will appear in 52nd Annual IEEE Symposium on Foundations of Computer Science. Preprint available at http://arxiv.org/abs/1103.6161, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. E. Brock. Centroid and inertia tensor of a spherical triangle. National Technical Information Service, Naval Postgraduate School, Monterey, California, 1974.Google ScholarGoogle Scholar
  10. D. Gabai, G. R. Meyerhoff, and N. Thurston. Homotopy hyperbolic 3-manifolds are hyperbolic. Ann. of Math. (2), 157(2):335--431, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. Gabai, R. Meyerhoff, and P. Milley. Minimum volume cusped hyperbolic three-manifolds. J. Amer. Math. Soc., 22(4):1157--1215, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paulo, 8:1--79, 1953.Google ScholarGoogle Scholar
  13. U. Haagerup. The best constants in the Khintchine inequality. Studia Math., 70(3):231--283 (1982), 1981.Google ScholarGoogle ScholarCross RefCross Ref
  14. T. C. Hales. A proof of the Kepler conjecture. Ann. of Math. (2), 162(3):1065--1185, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. R. Hall. On a conjecture of Littlewood. Math. Proc. Cambridge Philos. Soc., 78(3):443--445, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  16. E. Hansen. Global optimization using interval analysis, volume 165 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1992.Google ScholarGoogle Scholar
  17. J. Hass and R. Schlafly. Double bubbles minimize. Ann. of Math. (2), 151(2):459--515, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  18. D. Hensley. Slicing the cube in Rn and probability (bounds for the measure of a central cube slice in Rn by probability methods). Proc. Amer. Math. Soc., 73(1):95--100, 1979.Google ScholarGoogle Scholar
  19. S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages 767--775 (electronic), New York, 2002. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Khot. On the unique games conjecture (invited survey). In Proceedings of the 25th Annual IEEE Conference on Computational Complexity, pages 99--121, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319--357 (electronic), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Khot and A. Naor. Approximate kernel clustering. In 49th Annual IEEE Symposium on Foundations of Computer Science, pages 561--570, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Khot and A. Naor. Sharp kernel clustering algorithms and their associated grothendieck inequalities. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 664--683, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Khot and A. Naor. Grothendieck-type inequalities in combinatorial optimization. To appear in Comm. Pure Appl. Math., preprint available at http://arxiv.org/abs/1108.2464, 2011.Google ScholarGoogle Scholar
  25. A. Koldobsky. Fourier analysis in convex geometry, volume 116 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.Google ScholarGoogle Scholar
  26. H. König. On an extremal problem originating in questions of unconditional convergence. In Recent progress in multivariate approximation (Witten-Bommerholz, 2000), volume 137 of Internat. Ser. Numer. Math., pages 185--192. Birkhauser, Basel, 2001.Google ScholarGoogle Scholar
  27. H. König and A. Koldobsky. Volumes of low-dimensional slabs and sections in the cube. To appear in Advances of Appl. Math., 2011.Google ScholarGoogle Scholar
  28. J.-L. Krivine. Sur la constante de Grothendieck. C. R. Acad. Sci. Paris Sér. A-B, 284(8):A445--A446, 1977.Google ScholarGoogle Scholar
  29. R. Latała and K. Oleszkiewicz. On the best constant in the Khinchin-Kahane inequality. Studia Math., 109(1):101--104, 1994.Google ScholarGoogle Scholar
  30. G. M. Minchin. A treatise on statics, containing some of the fundamental propositions in electrostatics. London, Longmans, Green & Co. 1877.Google ScholarGoogle Scholar
  31. E. Mossel, R. O'Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences: Invariance and optimality. In 46th Annual Symposium on Foundations of Computer Science, pages 21--30. IEEE Computer Society, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. L. Nazarov and A. N. Podkorytov. Ball, Haagerup, and distribution functions. In Complex analysis, operators, and related topics, volume 113 of Oper. Theory Adv. Appl., pages 247--267. Birkhauser, Basel, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  33. K. Oleszkiewicz and A. Pełczynski. Polydisc slicing in Cn. Studia Math., 142(3):281--294, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  34. L. Song, A. Smola, A. Gretton, and K. A. Borgwardt. A dependence maximization view of clustering. In Proceedings of the 24th International Conference on Machine Learning, pages 815 -- 822, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. J. Szarek. On the best constants in the Khinchin inequality. Studia Math., 58(2):197--208, 1976.Google ScholarGoogle ScholarCross RefCross Ref
  36. B. Tomaszewski. A simple and elementary proof of the Kchintchine inequality with the best constant. Bull. Sci. Math. (2), 111(1):103--109, 1987.Google ScholarGoogle Scholar
  37. U. Zwick. Computer assisted proof of optimal approximability results. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 496--505, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Solution of the propeller conjecture in R3

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '12: Proceedings of the forty-fourth annual ACM symposium on Theory of computing
      May 2012
      1310 pages
      ISBN:9781450312455
      DOI:10.1145/2213977

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 May 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada
    • Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader