skip to main content
10.1145/2213977.2214036acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Affine projections of polynomials: extended abstract

Published:19 May 2012Publication History

ABSTRACT

An m-variate polynomial f is said to be an affine projection of some n-variate polynomial g if there exists an nm matrix A and an n-dimensional vector b such that f(x)=g(Ax+b). In other words, if f can be obtained by replacing each variable of g by an affine combination of the variables occurring in f, then it is said to be an affine projection of g. Some well known problems (such as the determinant versus permanent and matrix multiplication for example) are instances of this problem. Given f and g can we determine whether f is an affine projection of g? The intention of this paper is to understand the complexity of the corresponding computational problem: given polynomials f and g find A and b such that f=g(Ax+b), if such an (Ab) exists. We first show that this is an NP-hard problem. We then focus our attention on instances where g is a member of some fixed, well known family of polynomials so that the input consists only of the polynomial f(x) having m variables and degree d. We consider the situation where f(x) is given to us as a blackbox (i.e. for any point aFm we can query the blackbox and obtain f(a) in one step) and devise randomized algorithms with running time poly(mnd) in the following special cases. Firstly where g is the Permanent (respectively the Determinant) of an nxn matrix and A is of rank n2. Secondly where g is the sum of powers polynomial (respectively the sum of products polynomial), and A is a random matrix of the appropriate dimensions (also d should not be too small).

Skip Supplemental Material Section

Supplemental Material

stoc_7b_4.mp4

mp4

151.9 MB

References

  1. S. Aaronson. Arithmetic natural proofs theory is sought. available at http://scottaaronson.com/blog/?p=336, 2008.Google ScholarGoogle Scholar
  2. S. Aaronson and D. van Melkebeek. A note on circuit lower bounds from derandomization. Electronic Colloquium on Computational Complexity (ECCC), 17:105, 2010.Google ScholarGoogle Scholar
  3. M. Agrawal. Determinant versus permanent. In Proceedings of the International Congress of Mathematicians (ICM), pages 1409--1421, 2006.Google ScholarGoogle Scholar
  4. M. Agrawal and N. Saxena. Equivalence of F-algebras and cubic forms. In Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science, pages 115--126, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Alexeev, M. Forbes, and J. Tsimerman. Tensor rank: Some lower and upper bounds. In CCC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. V. Arvind, P. Mukhopadhyay, and S. Srinivasan. New results on noncommutative and commutative polynomial identity testing. Computational Complexity, 19(4):521--558, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Bernardi, A. Gimigliano, and M. Idà. Computing symmetric rank for symmetric tensors. Journal of Symbolic Computation, 46:34--53, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Botta. Linear transformations that preserve the permanent. Proceedings of the American Mathematical Society, 18:566--569, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  9. P. Burgisser. Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics. Springer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Burgisser and C. Ikenmeyer. Geometric complexity theory and tensor rank. In STOC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J.-Y. Cai, X. Chen, and D. Li. A quadratic lower bound for the permanent and determinant problem over any characteristic $\ne$ 2. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 491--498, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. X. Chen, N. Kayal, and A. Wigderson. Partial derivatives in arithmetic complexity. Foundations and Trends in Theoretical Computer Science, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. Comon, G. Golub, L.-H. Lim, and B. Mourrain. Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl., 30:1254--1279, September 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Dieudonné. Sur une generalisation du groupe orthogonal a quatre variables. Archiv Der Math., 1:282--287, 1948.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. Ehrenborg and G.-C. Rota. Apolarity and canonical forms for homogeneous polynomials. Eur. J. Comb., 14(3):157--181, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. W. J. Ellison. A 'waring's problem' for homogeneous forms. Proceedings of the Cambridge Philosophical Society, 65:663--672, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Frobenius. Ueber die darstellung der endlichen gruppen durch linearc substitutionen. Sitzungber. der Berliner Akademie, 7:994--1015, 1897.Google ScholarGoogle Scholar
  18. D. Grigoriev and M. Karpinski. An exponential lower bound for depth 3 arithmetic circuits. In STOC, pages 577--582, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Grigoriev and A. A. Razborov. Exponential complexity lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields. In FOCS, pages 269--278, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Gupta, N. Kayal, and S. Lokam. Reconstruction of depth-4 multilinear circuits with top fan-in 2. submitted.Google ScholarGoogle Scholar
  21. B. Hall. Lie Groups, Lie Algebras, and Representations. Springer-Verlag, NewYork, 2007.Google ScholarGoogle Scholar
  22. J. Håstad. Tensor rank is np-complete. J. Algorithms, 11:644--654, December 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13(1/2):1--46, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. Kaltofen. Factorization of polynomials given by straight-line programs. Randomness and Computation, 5:375--412, 1989.Google ScholarGoogle Scholar
  25. S. Kantor. Théorie der aquivalenz von linearen ínfty lambda- scharen bilinearer formen. Sitzungber. der Münchener Akademie, 2:367--381, 1897.Google ScholarGoogle Scholar
  26. Z. S. Karnin and A. Shpilka. Reconstruction of generalized depth-3 arithmetic circuits with bounded top fan-in. In IEEE Conference on Computational Complexity, pages 274--285, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Karp. Reducibility among combinaorial problems. In Complexity of Computer Computations, pages 85--103, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  28. N. Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1409--1421, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Kirillov. An introduction to Lie Groups and Lie Algebras. Cambridge University Press, Cambridge, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Kleppe. Representing a homogeneous polynomial as a sum of powers of linear forms. Master's thesis, University Of Oslo, 1999.Google ScholarGoogle Scholar
  31. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, Cambridge, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. M. Landsberg. The Geometry of Tensors, volume 128 of Graduate Studies in Mathematics. American Mathematical Society, 2012.Google ScholarGoogle Scholar
  33. M. Marcus and F. May. The permanent function. Canadian Journal of Math., 14:177--189, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  34. M. Marcus and B. N. Moyls. Linear transformations on algebras of matrices. Canadian Journal of Math., 11:61--66, 1959.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. Marcus and R. Purves. Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions. Canadian Journal of Math., 11:383--396, 1959.Google ScholarGoogle ScholarCross RefCross Ref
  36. T. Mignon and N. Ressayre. A quadratic bound for the determinant and permanent problem. International Mathematics Research Notices, pages 4241--4253, 2004.Google ScholarGoogle Scholar
  37. K. Morita. Schwarz's lemma in a homogeneous space of higher dimensions. Japanese Journal of Math, 19:45--46, 1944.Google ScholarGoogle ScholarCross RefCross Ref
  38. K. Mulmuley and M. A. Sohoni. Geometric complexity theory i: An approach to the p vs. np and related problems. SIAM J. Comput., 31(2):496--526, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Patarin. Hidden field equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms. In Advances in Cryptology -- EUROCRYPT 1996, pages 33--48, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. R. Raz. Tensor-rank and lower bounds for arithmetic formulas. In STOC, pages 659--666, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. I. Schur. Einige bemerkungen zur determinantentheorie. der Preussischen Akademie der Wissenschaften zu Berlin, 25:454--463, 1925.Google ScholarGoogle Scholar
  42. A. Shpilka. Affine projections of symmetric polynomials. Journal of Computer and System Sciences, 65(4):639--659, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. A. Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. In STOC, pages 284--293, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science, 5:207--388, March 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354--356, 1969.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Affine projections of polynomials: extended abstract

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        STOC '12: Proceedings of the forty-fourth annual ACM symposium on Theory of computing
        May 2012
        1310 pages
        ISBN:9781450312455
        DOI:10.1145/2213977

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 May 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,469of4,586submissions,32%

        Upcoming Conference

        STOC '24
        56th Annual ACM Symposium on Theory of Computing (STOC 2024)
        June 24 - 28, 2024
        Vancouver , BC , Canada

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader