skip to main content
research-article

Sparse transfer learning for interactive video search reranking

Published: 06 August 2012 Publication History

Abstract

Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low-level visual features and high-level semantic concepts. In this article, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it (a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, (b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and (c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL-based interactive video search reranking.

References

[1]
Bian, W. and Tao, D. 2011. Max-Min distance analysis by using sequential SDP relaxation for dimension reduction. IEEE Trans. Patt. Anal. Mach. Intell. 33, 5, 1037--1050.
[2]
Cai, D., He, X., and Han, J. 2005. Using graph model for face analysis. Tech. rep., Computer Science Department, University of Illinois at Urbana-Champaign.
[3]
Cai, D., He, X., and Han, J. 2007a. Semi-supervised discriminant analysis. In Proceedings of the IEEE International Conference on Computer Vision. 1--8.
[4]
Cai D., HE X., and Han J. 2007b. Spectral regression: A unified approach for sparse subspace learning. In Proceedings of ICDM. 73--82.
[5]
Carneiro, G., Chan, A. B., Moreno, P. J., and Vasconcelos, N. 2007. Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans. Patt. Anal. Mach. Intell. 394--410.
[6]
Chang, T. and Kuo, C.-C. 1993. Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 2, 429--441.
[7]
Chang, H. S., Sull, S., and Lee, S. U. 1999. Efficient video indexing scheme for content-based retrieval. IEEE Trans. Circuits Syst. Video Tech. 1269--1279.
[8]
Efron, B., Hastie, T., and Tibshirani, R. 2004. Least angle regression. Ann. Stat. 32, 68--73.
[9]
Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Ann. Eugen. 179--188.
[10]
Guan, N., Tao, D., Luo, Z., and Yuan, B. 2011. Manifold Regularized Discriminative Non-negative Matrix Factorization with Fast Gradient Descent. IEEE Trans. Image Proc.
[11]
He, X. and Niyogi, P. 2003. Locality preserving projections. In Adv. Neural Inf. Proc. Syst.
[12]
Hotteling, H. 1933. Analysis of a complex of statistical variables into principal components. J. Educat. Psych. 24, 417--441.
[13]
Hsu, W. H., Kennedy, L. S., and Chang, S.-F. 2006. Video search reranking via information bottleneck principle. In Proceedings of the ACM International Conference on Multimedia. 35--44.
[14]
Hsu, W. H., Kennedy, L. S., and Chang, S.-F. 2007. Video search reranking through random walk over document-level context graph. In Proceedings of the ACM International Conference on Multimedia. 971--980.
[15]
Huang, J., Kumar, S.-R., Mitra, M., Zhu, W.-J., and Zabih, R. 1997. Image indexing using color correlograms. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 762--768.
[16]
Jeon J., Lavrenko V., and Manmatha R. 2003. Automatic image annotation and retrieval using cross-media relevance models. ACM Special Interest Group on Information Retrieval. 119--126.
[17]
Jing, Y. and Baluja, S. 2008. Visualrank: Applying pagerank to large-scale image search. IEEE Trans. Patt. Anal. Mach. Intell. 30, 1877--1890.
[18]
Kotoulas, L. and Andreadis, I. 2003. Color histogram content based image retrieval and hardware implementation. IEE Proc. Circuits Devices Syst. 387--93.
[19]
Lew, M. S., Sebe, N., Djeraba, C., and Jain R. 2006. Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. 2, 1--19.
[20]
Lin, Y.-Y., Liu, T.-L., and Chen, H.-T. 2005. Semantic manifold learning for image retrieval. In Proceedings of the ACM International Conference on Multimedia. 06--11.
[21]
Liu, J., Lai, W., Hua, X.-S., Huang, Y., and Li, S. 2007. Video search re-ranking via multi-graph propagation. In Proceedings of the ACM International Conference on Multimedia. 208--217.
[22]
Liu, L., Rui, Y., Sun, L.-F., Yang, B., Zhang, J., and Yang, S.-Q. 2008. Topic mining on web-shared videos. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 2145--2148.
[23]
Ma, W.-Y. and Zhang, H.-J. 1998. Benchmarking of image features for content-based retrieval. In Proceedings of the Record of the 32nd Asilomar Conference on Signals, Systems & Computers, vol. 1, 253--257.
[24]
Neumaier, A. 1998. Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev. 40, 636--666.
[25]
Natsev, A., Haubold, A., Tesic, J., Xie, L., and Yan, R. 2007. Semantic concept-based query expansion and re-ranking for multimedia retrieval. In Proceedings of the ACM International Conference on Multimedia. 991--1000.
[26]
Nguyen, G. P. and Worring, M. 2008. Optimization of interactive visual-similarity-based search. ACM Trans. Multimed. Comput. Communicat. Appl. 4.
[27]
Qi, G.-J., Hua, X.-S., Rui, Y., Tang, J., Mei, T., Wang, M., and Zhang, H.-J. 2008. Correlative multilabel video annotation with temporal kernels. ACM Trans. Multimed. Comput. Commun. Appl. 5.
[28]
Robertson, S. E., Walker, S., Hancock-Beaulieu, M., Gatford, M., and Payne A. 1997. Simple, proven approaches to text retrieval. Cambridge University Computer Laboratory, Tech. rep. TR356.
[29]
Rocchio, J. J. 1971. Relevance feedback in information retrieval. In SMART Retrieval System - Experiments in Automatic Document Processing. Prentice-Hall, 313--323.
[30]
Roweis, S. T. and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323--2326.
[31]
Rui, Y., Huang, T.-S., and Mehrotra, S. 1997. Content-based image retrieval with relevance feedback in MARS. In Proceedings of the IEEE International Conference on Image Processing. 815--818.
[32]
Rui, Y., Huang, T.-S., Ortega, M., and Mehrotra, S. 1998. Relevance feedback: A power tool in interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Technol. Special Issue on Segmentation, Description, and Retrieval of Video Content, 8, 644--655.
[33]
Si, S., Tao, D., and Geng, B. 2010. Bregman divergence based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Eng. 22, 7, 929--942.
[34]
Slonim, N. and Tishby, N. 1999. Agglomerative information bottleneck. In Advances in Neural Information Processing Systems.
[35]
Smeulders, A. W., Worring, M., Santini, S., Gupta, A., and Jain, R. 2000. Content-based image retrieval at the end of the early years. IEEE Trans. Patt. Anal. Mach. Intell. 22, 1349--1380.
[36]
Tao, D., Tang, X., Li, X., and Rui, Y. 2006. Direct kernel biased discriminant analysis: A new content-based image retrieval relevance feedback algorithm. IEEE Trans. Multimed. 716--727.
[37]
Tenenbaum, J. B., de Silva, V., and Langford, J. C. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319--2323.
[38]
TRECVID.TREC Video Retrieval Evaluation. http://www-nlpir.nist.gov/projects/trecvid. Trec measures. In Proceedings of Trec-10. Appendix on common evaluation measures. http://trec.nist.gov/pubs/trec10/appendices/meaures.pdf.
[39]
Tian, X., Yang, L., Wang, J., Yang, Y., Wu, X., and Hua, X.-S. 2008. Bayesian video search reranking. In Proceedings of the ACM International Conference on Multimedia. 131--140.
[40]
Tian, X., Tao, D., Hua, X.-S., and Wu, X. 2010. Active reranking for Web image search. IEEE Trans. Image Process. 19, 3, 805--820.
[41]
Yan, S. and Hauptmann, A. G. 2004. Co-retrieval: a boosted reranking approach for video retrieval. In Proceedings of the ACM International Conference on Content-Based Image and Video Retrieval. 60--69.
[42]
Yan, S., Hu, Y., Xu, D., Zhang, B., Zhang, H., and Cheng, Q. 2007. Nonlinear discriminant analysis on embedded manifold. IEEE Trans. Circ. Syst. Video Tech. 17, 4, 468--477.
[43]
Yang, B. 2010. DSI: A model for distributed multimedia semantic indexing and content integration. ACM Trans. Multi. Computing Communi. Appl. 6.
[44]
Zhang, T., Tao, D., Li, X., and Yang, J. 2008. A unifying framework for spectral analysis based dimensionality reduction. In Proceedings of the IEEE International Conference on Neural Networks. 1670--1677.
[45]
Zhang, Z. and Zha, H. 2004. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26, 313--338.
[46]
Zhou, X. S. and Huang, T. S. 2001. Small sample learning during multimedia retrieval using biasmap. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Vol. 1. 11--17.
[47]
Zhou, T., Tao, D., and Wu, X. 2011. Manifold elastic net: A unified framework for sparse dimension reduction. Data Mining Knowl. Disc. 22, 3, 340--371.
[48]
Zou, H. and Hastie, T. 2005. Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B, 67, 301--320.

Cited By

View all
  • (2024)Color Transfer for Images: A SurveyACM Transactions on Multimedia Computing, Communications, and Applications10.1145/363515220:8(1-29)Online publication date: 9-Jul-2024
  • (2024)Oil film identification via windspeed interference estimation using hyperspectral dataInternational Journal of Remote Sensing10.1080/01431161.2024.230453745:3(814-847)Online publication date: 28-Jan-2024
  • (2023)Unsupervised Adversarial Domain Adaptation Regression for Rate of Penetration PredictionSPE Journal10.2118/214680-PA28:05(2604-2618)Online publication date: 5-Apr-2023
  • Show More Cited By

Index Terms

  1. Sparse transfer learning for interactive video search reranking

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Multimedia Computing, Communications, and Applications
    ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 8, Issue 3
    July 2012
    143 pages
    ISSN:1551-6857
    EISSN:1551-6865
    DOI:10.1145/2240136
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 August 2012
    Accepted: 01 March 2011
    Revised: 01 December 2010
    Received: 01 June 2010
    Published in TOMM Volume 8, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Interactive video search reranking
    2. dimension reduction
    3. sparsity
    4. transfer learning

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Color Transfer for Images: A SurveyACM Transactions on Multimedia Computing, Communications, and Applications10.1145/363515220:8(1-29)Online publication date: 9-Jul-2024
    • (2024)Oil film identification via windspeed interference estimation using hyperspectral dataInternational Journal of Remote Sensing10.1080/01431161.2024.230453745:3(814-847)Online publication date: 28-Jan-2024
    • (2023)Unsupervised Adversarial Domain Adaptation Regression for Rate of Penetration PredictionSPE Journal10.2118/214680-PA28:05(2604-2618)Online publication date: 5-Apr-2023
    • (2023)A holistic multi-source transfer learning approach using wearable sensors for personalized daily activity recognitionComplex & Intelligent Systems10.1007/s40747-023-01218-w10:1(1459-1471)Online publication date: 13-Sep-2023
    • (2022)A novel feature selection method using generalized inverted Dirichlet-based HMMs for image categorizationInternational Journal of Machine Learning and Cybernetics10.1007/s13042-022-01529-313:8(2365-2381)Online publication date: 14-Mar-2022
    • (2022)Construction of small sample seismic landslide susceptibility evaluation model based on Transfer Learning: a case study of Jiuzhaigou earthquakeBulletin of Engineering Geology and the Environment10.1007/s10064-022-02601-681:3Online publication date: 23-Feb-2022
    • (2020)Heterogeneous-Graph-Based Video Search Reranking Using Topic RelevanceIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences10.1587/transfun.2020SMP0023E103.A:12(1529-1540)Online publication date: 1-Dec-2020
    • (2020)Improved TrAdaBoost and its Application to Transaction Fraud DetectionIEEE Transactions on Computational Social Systems10.1109/TCSS.2020.30170137:5(1304-1316)Online publication date: Oct-2020
    • (2019)A Heterogeneous IoT Data Analysis Framework with Collaboration of Edge-Cloud Computing: Focusing on Indoor PM10 and PM2.5 Status PredictionSensors10.3390/s1914303819:14(3038)Online publication date: 10-Jul-2019
    • (2019)Eigenvector-Based Distance Metric Learning for Image Classification and RetrievalACM Transactions on Multimedia Computing, Communications, and Applications10.1145/334026215:3(1-19)Online publication date: 20-Aug-2019
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media