skip to main content
research-article

A control theoretic scheme for efficient video transmission over IEEE 802.11e EDCA WLANs

Authors Info & Claims
Published:06 August 2012Publication History
Skip Abstract Section

Abstract

The EDCA mechanism of the IEEE 802.11 standard has been designed to support, among others, video traffic. This mechanism relies on a number of parameters whose configuration is left open by the standard. Although there are some recommended values for these parameters, they are fixed independent of the WLAN conditions, which results in suboptimal performance. Following this observation, a number of approaches in the literature have been devised to set the EDCA parameters based on an estimation of the WLAN conditions. However, these previous approaches are based on heuristics and hence do not guarantee optimized performance. In this article we propose a novel algorithm to adjust the EDCA parameters to carry video traffic which, in contrast to previous approaches, is sustained on mathematical foundations that guarantee optimal performance. In particular, our approach builds upon (i) an analytical model of the WLAN performance under video traffic, used to derive the optimal point of operation of EDCA, and (ii) a control theoretic designed mechanism which drives the WLAN to this point of operation. Via extensive simulations, we show that the proposed approach performs optimally and substantially outperforms the standard recommended configuration as well as previous adaptive proposals.

Skip Supplemental Material Section

Supplemental Material

References

  1. Argyriou, A. 2008. Error-resilient video encoding and transmission in multirate wireless LANs. IEEE Trans. Multimed. 10, 5, 691--700. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aström, K. and Wittenmark, B. 1990. Computer-Controlled Systems: Theory and Design 2nd ed. Prentice-Hall, Inc., Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Banchs, A., Pérez-Costa, X., and Qiao, D. 2003. Providing throughput guarantees in IEEE 802.11e wireless LANs. In Proceedings of the 18th International Teletraffic Congress (ITC18).Google ScholarGoogle Scholar
  4. Banchs, A. and Vollero, L. 2006. Throughput analysis and optimal configuration of 802.11e EDCA. Comput. Net. 50, 11, 1749--1768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bianchi, G. 2000. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Select. Areas Comm. 18, 3, 535--547. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Boggia, G., Camarda, P., Grieco, L., and Mascolo, S. 2007. Feedback-based control for providing real-time services with the 802.11e MAC. IEEE/ACM Trans. Netw. 15, 2, 323--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bucciol, P., Davini, G., Masala, E., Filippi, E., and De Martin, J. 2004. Cross-layer perceptual ARQ for H.264 video streaming over 802.11 wireless networks. In Proceedings of IEEE GLOBECOM '04. Vol. 5.Google ScholarGoogle ScholarCross RefCross Ref
  8. Cavendish, D., Gerla, M., and Mascolo, S. 2004. A control theoretical approach to congestion control in packet networks. IEEE/ACM Trans. Netw. 12, 893--906. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, C.-L. 2007. IEEE 802.11e EDCA QoS provisioning with dynamic fuzzy control and cross-layer interface. In Proceedings of ICCCN.Google ScholarGoogle ScholarCross RefCross Ref
  10. Duffy, K., Malone, D., and Leith, D. 2005. Modeling the 802.11 distributed coordination function in non-saturated conditions. IEEE Comm. Letters 9, 8.Google ScholarGoogle ScholarCross RefCross Ref
  11. Foh, C., Zhang, Y., Ni, Z., Cai, J., and Ngan, K. 2007a. Optimized cross-layer design for scalable video transmission over the IEEE 802.11e networks. IEEE Trans. Circ. Syst. Video Tech. 17, 12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Foh, C., Zukerman, M., and Tantra, J. 2007b. A markovian framework for performance evaluation of IEEE 802.11. IEEE Trans. Wire. Comm. 6, 4, 1276--1265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Franklin, G., Powell, D., and Workman, M. 1997. Digital Control of Dynamic Systems. Prentice-Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Freitag, J., da Fonseca, N. L. S., and de Rezende, J. F. 2006. Tuning of 802.11e Network Parameters. IEEE Comm. Letters 10, 8, 611--613.Google ScholarGoogle ScholarCross RefCross Ref
  15. Grieco, L., Boggia, G., Mascolo, S., and Camarda, P. 2003. A control theoretic approach for supporting quality of service in IEEE 802.11e WLANs with HCF. In Proceedings of the 42nd IEEE Conference on Decision and Control. Vol. 2, 1586--1591.Google ScholarGoogle Scholar
  16. He, W., Nahrstedt, K., and Liu, X. 2008. End-to-end delay control of multimedia applications over multihop wireless links. ACM Trans. Multimedia Comput. Commun. Appl. 5, 16:1--16:20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Heyman, D. P. and Sobel, M. J. 2004. Stochastic Models in Operations Research, Vol. I: Stochastic Processes and Operating Characteristics. Dover Publications.Google ScholarGoogle Scholar
  18. Hollot, C. V., Misra, V., Towsley, D., and Gong, W. B. 2001. A control Theoretic Analysis of RED. In Proceedings of IEEE INFOCOM. 1510--1519.Google ScholarGoogle Scholar
  19. IEEE 802.11. 2007. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Revision of IEEE Std 802.11-1999.Google ScholarGoogle Scholar
  20. IEEE 802.11b. 1999. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: higher-speed physical layer extension in the 2.4 GHz band.Google ScholarGoogle Scholar
  21. IEEE 802.11e. 2005. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: medium access control (MAC) enhancements for quality of service. Supplement to IEEE 802.11 Standard.Google ScholarGoogle Scholar
  22. IEEE 802.11g. 2003. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 4: further higher data rate extension in the 2.4 GHz Band.Google ScholarGoogle Scholar
  23. IEEE 802.11TGaa. 2010. Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: amendment for robust streaming of audio video transport streams, draft 0.05.Google ScholarGoogle Scholar
  24. ITU-T. 2001. Recommendation G.1010: End-user multimedia QoS categories.Google ScholarGoogle Scholar
  25. ITU-T. 2007. Recommendation G.1070: Opinion model for video-telephony applications.Google ScholarGoogle Scholar
  26. Kleinrock, L. 1975. Queuing Systems, Vol. 1: Theory. Wiley-Interscience.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ksentini, A., Naimi, M., and Gueroui, A. 2006. Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross-layer architecture. IEEE Comm. Mag. 44, 1, 107--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lambert, P., De Neve, W., De Neve, P., Moerman, I., Demeester, P., and Van de Walle, R. 2006. Rate-distortion performance of H.264/AVC compared to state-of-the-art video codecs. IEEE Trans. Circ. Syst. Video Tech. 16, 1, 134--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Malone, D., Duffy, K., and Leith, D. 2007. Modeling the 802.11 distributed coordination function in non-saturated heterogeneous conditions. IEEE/ACM Trans. Netw. 15, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nafaa, A. and Ksentini, A. 2008. On Sustained QoS guarantees in operated IEEE 802.11 wireless LANs. IEEE Trans. Paral. Distribut. Syst. 19, 8, 1020--1033. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Patras, P., Banchs, A., and Serrano, P. 2009. A control theoretic approach for throughput optimization in IEEE 802.11e EDCA WLANs. Mobile Net. Appl. 14, 6, 697--708. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Patras, P., Banchs, A., Serrano, P., and Azcorra, A. 2010. A control theoretic approach to distributed optimal configuration of 802.11 WLANs. IEEE Trans. Mobile Comput. 99, PrePrints. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Serrano, P., Banchs, A., and Kukielka, J. 2007. Optimal configuration of 802.11e EDCA under voice traffic. In Proceeding of the Global Telecommunications Conference. (GLOBECOM '07). IEEE. 5107--5111.Google ScholarGoogle Scholar
  34. Xiao, Y., Li, F. H., and Li, B. 2007. Bandwidth sharing schemes for multimedia traffic in the IEEE 802.11e contention-based WLANs. IEEE Trans. Mobile Comput. 6, 7, 815--831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xiao, Y., Li, H., and Choi, S. 2004. Protection and guarantee for voice and video traffic in IEEE 802.11e wireless LANs. In Proceedings of IEEE INFOCOM. Vol. 3, 2152--2162.Google ScholarGoogle Scholar
  36. Yang, Y., Haverkort, B. R., and Heijenk, G. J. 2007. A centralized feedback control model for resource management in wireless networks. In Proceedings of the 8th International Workshop on Performance Modeling of Computer and Communications. Systems.Google ScholarGoogle Scholar
  37. Zhang, Y., Foh, C., and Cai, J. 2008. An on-off queue control mechanism for scalable video streaming over the IEEE 802.11e WLAN. In Proceedings of ICC '08. 4958--4962.Google ScholarGoogle Scholar

Index Terms

  1. A control theoretic scheme for efficient video transmission over IEEE 802.11e EDCA WLANs

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Multimedia Computing, Communications, and Applications
        ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 8, Issue 3
        July 2012
        143 pages
        ISSN:1551-6857
        EISSN:1551-6865
        DOI:10.1145/2240136
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 6 August 2012
        • Accepted: 1 May 2011
        • Revised: 1 November 2010
        • Received: 1 June 2010
        Published in tomm Volume 8, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader