skip to main content
10.1145/225298.225333acmconferencesArticle/Chapter ViewAbstractPublication PagescoltConference Proceedingsconference-collections
Article
Free Access

The perceptron algorithm vs. Winnow: linear vs. logarithmic mistake bounds when few input variables are relevant

Authors Info & Claims
Published:05 July 1995Publication History
First page image

References

  1. BEHW89.A. Blumer, A. Ehrenfeucht, D. ttaussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis dimeusion. J. ACM, 36(4):929-965, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. DH73.R, O. Duds and P. E. Hart. Paller~ Classzficaizon and Scene Analysis. Wiley, 1973.Google ScholarGoogle Scholar
  3. DK95.E. Dichterman and R. Khardon. A tight bound for the VC dimension of k-term DNF. Private communication.Google ScholarGoogle Scholar
  4. Kha79.L.G. Khachiyan. A polynomial algorithm in linear programming (in Russian). Dok'- lady Akadcmlz Nauk SSSR, 244:1093-1096, 1979. (English translation: Smqet Mathematics Doklady 20:191-194, 1979.)Google ScholarGoogle Scholar
  5. KW94.J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Report UCSC-CRL- 94-16, University of California, Santa Cruz, June 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Lit88.N. Littlestone. Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm. Mach. Learmng, 2:285-318, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Lit89.N. Little~tone. M~ttake Bounds and Logamthm~c Linear-threshold Learning Algorithms. PhD thesis, Report UCSC-CRL- 89-11, University of California Santa Cruz, 1989, Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lit91.N. Littlestone, Redundant noisy attributes, attribute errors, and linear threshold learning using Winnow. In Proc. dth Workshop on Comput. Learning Theory, pages 147- 156. Morgan Kaufinann, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Lit95.N. Littlestone. Comparing several linearthreshold learning algorithms on tasks involving superfluous attributes. In Proc. 12th I, ler'natzonal Machine Learning Conference (ML-95), July 1995.Google ScholarGoogle Scholar
  10. LLW91.N. Littlestone, P. M. Long, and M. K. Warmuth. On-line learning of linear functions. In Proc. 23rd ACM Symposzum on Theory of Computing, pages 465 475, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. MT94.W. Maass and G. Turgm. How fast can a threshold gate learn. In Computatwnal gear, z,g Theory and Natural Learmng Systema, Volume I, pages 381-414. MIT Press, 1994, Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ros58.F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev., 65:386-407, 1958. (Reprinted in Neurocomputing (MIT Press, 1988).). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. SST91.It. Sompolinsky, H. S. Seung, and N. Tishby. Learning curves in large neural networks. In Proc. dth Workshop on Cornpitt. ~ear, m9 Theory, pages 112-127. Morgan Kaufrnann, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Vai89.P M. Vaidya. A new algorithm for minimizing convex functions over convex sets. In Proc. 30lh Symposzum on Foundatwns of Computer Sczcnce, pages 338 343. IEEE Cornputer Society, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Val84.L.G. Valiant. A theory of the learnable. Commu,. ACM, 27(11):1134-1142, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. VC71.V N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probab. and ~ts Apphcations, 16(2):264- 280, 1971.Google ScholarGoogle Scholar
  17. WRB93.T.L.H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a rule. Rev. Mod. Phys., 65:499-5,56, 1993.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The perceptron algorithm vs. Winnow: linear vs. logarithmic mistake bounds when few input variables are relevant

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              COLT '95: Proceedings of the eighth annual conference on Computational learning theory
              July 1995
              464 pages
              ISBN:0897917235
              DOI:10.1145/225298

              Copyright © 1995 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 5 July 1995

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • Article

              Acceptance Rates

              Overall Acceptance Rate35of71submissions,49%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader