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ABSTRACT
A well-known problem in computational geometry is Klee’s
measure problem, which asks for the volume of a union
of axis-aligned boxes in d-space. In this paper, we con-
sider Klee’s measure problem for the special case where a
2-dimensional orthogonal projection of all the boxes has a
common corner. We call such a set of boxes 2-grounded
and, more generally, a set of boxes is k-grounded if in a
k-dimensional orthogonal projection they share a common
corner.

Our main result is an O(n(d−1)/2 log2 n) time algorithm
for computing Klee’s measure for a set of n 2-grounded
boxes. This is an improvement of roughly O(

√
n) compared

to the fastest solution of the general problem. The algo-
rithm works for k-grounded boxes, for any k ≥ 2, and in the
special case of k = d, also called the hypervolume indica-
tor problem, the time bound can be improved further by a
logn factor. The key idea of our technique is to reduce the
d-dimensional problem to a semi-dynamic weighted volume
problem in dimension d− 2. The weighted volume problem
requires solving a combinatorial problem of maintaining the
sum of ordered products, which may be of independent in-
terest.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
Grounded boxes, hypervolume indicator, Klee’s measure,
sum of ordered products, weighted volume
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1. INTRODUCTION
Klee’s Measure Problem [14] is a classical problem in com-

putational geometry, dating back to 1970s: Given a set of n
axis-aligned boxes in d-space, compute the volume of their
union. The first non-trivial solution, with running time
O(nd−1 logn), was given by Bentley using his space-sweep
approach [3], which was quickly improved to O(nd−1) time
by van Leeuwen and Wood [16]. Several years later, Over-
mars and Yap [15] made a breakthrough and achieved the

bound of O(nd/2 logn), which essentially remains unbeaten
more than 20 years later [8]. All the improvements during
these intervening years have come in the form of reducing
the log factor (the best bound achieved by Chan [8]) or for
cubes, unit hypercubes and “fat” boxes [1, 2, 5, 7, 9]. The
problem is known to be #P -hard when the dimension is
part of the input [6], so the exponential dependence on the
dimension seems unavoidable.

In this paper, we present a new result for Klee’s measure
under the assumption that a 2-dimensional orthogonal pro-
jection of all the boxes has a common corner. We call such
a collection of boxes 2-grounded. (When the boxes share a
common corner in a k-dimensional projection, for 1 ≤ k ≤ d,
we call the set k-grounded. Naturally, the algorithm for 2-
grounded boxes work trivially for k-grounded, where k ≥ 2.)
Our approach has the following general form. We trans-
form the d-dimensional problem into one of maintaining its
(d−1)-dimensional cross-section with a sweeping plane. The
sweeping is a standard step used in algorithms for the Klee’s
measure, but instead of solving the cross-section problem
directly in (d − 1)-space, we exploit the grounding prop-
erty and transform the problem into a (d − 2)-dimensional
weighted volume problem. In this problem, each box has
a non-negative weight and, in computing the volume, the
contribution of each point in space equals the weight of the
heaviest box containing it. Solving the weighted volume
problem efficiently is the main result of our paper. In par-
ticular, we show that the d-dimensional weighted volume
can be maintained under insertion at the amortized cost of
O(n(d−1)/2 log2 n), which leads to an O(n(d−1)/2 log2 n) al-
gorithm for the d-dimensional Klee’s Measure Problem on
2-grounded boxes. In solving the weighted volume prob-
lem, we also introduce and solve a combinatorial problem of
maintaining the sum of ordered products, which may be of
independent interest.

Besides their intrinsic theoretical interest as a special case
of the general Klee’s problem, the k-grounded boxes also
arise frequently in applications when some of the coordinate
axes have a natural “start” or “end” position for ranges. For



instance, if one of the axes represents time recording the
duration of some event, then the origin marks the natural
start point, and therefore a source of grounding on that axis.
Similarly, in sensor databases, physical attributes such as
temperature, humidity etc. naturally have a common “lower
bound,” and the measured quantity is really the deviation
from this “grounded” value. In these cases, as long as two
or more dimensions are grounded, our algorithm leads to an
improved bound for computing the volume of the union.

Finally, if the boxes are d-grounded, namely they all share
a common corner, our bound improves by a logn factor.
This particular case of Klee’s measure is also known as the
hypervolume indicator, which is a metric frequently used
in multi-objective optimization and evolutionary comput-
ing [10,12,17]. This particular special case has been studied
extensively on its own, as well as a special case of unit cubes.
Nevertheless, our new algorithm achieves a new improved
bound for the following dimensions: d = 4, 5, 6.

The paper is organized in seven sections. In Section 2,
we explain how to reduce the d-dimensional problem to a
(d−2)-dimensional weighted volume problem. In Sections 3
and 4, we solve a special case of the weighted volume involv-
ing halfspaces, which turns out to be the key problem. In
Section 5, we show how the general weighted problem can
be solved based on the solution of the halfspace problem. In
Section 6, we briefly mention our results for the hypervol-
ume indicator. In Section 7, we conclude with a summary
and discussion.

2. DIMENSION REDUCTION: SWEEPING
AND WEIGHTING

The classical approach of Overmars and Yap [15] solves
the d-dimensional Klee’s Measure Problem by reducing it to
a dynamic (d− 1)-dimensional problem. Our key idea is to
reduce the d-dimensional problem to a (d − 2)-dimensional
weighted volume problem with insert-only updates. We re-
duce one dimension by plane sweep, and another by con-
verting the unweighted problem to a weighted problem. We
begin with the high level ideas behind the plane sweep, and
the weighting.

Reducing a Dimension by Plane Sweep. Consider a set
of axis-aligned boxes B = {B1, . . . , Bn} in d-space, for which
we want to compute the volume of their union. Without loss
of generality, we assume that all the boxes are contained
in the positive orthant Rd+—otherwise, we can divide the
problem into 2d groups, one for each quadrant. We say
that a box B is grounded with respect to dimension k if B’s
extent along the kth dimension has the form (0, Bk), where
Bk > 0 is the length of B along dimension k. Supposing
that all boxes in B are grounded with respect to dimension
d, we can compute the volume of their union as follows.
We sort the boxes in B in the descending order of their dth
coordinate. Without loss of generality, let the resulting order
be B1, B2, . . . , Bn, meaning that Bd1 > Bd2 > · · · > Bdn > 0.
We further assume that Bdn+1 = 0. Then, it is easy to see
that the total volume covered by B is given by the formula

n∑
i=1

Vi,d−1 × (Bdi −Bdi+1),

where Vi,d−1 is the volume of the set {B1, . . . , Bi} projected
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Figure 1: (a) A set of 3 boxes B1, B2, B3 in 3-space,
grounded with respect to the x3 axis, and (b) their
2-dimensional weighted projections.

onto the plane xd = 0.1 This is easily seen by visualiz-
ing a plane parallel to xd = 0, sweeping the space from
Bd1 to Bdn+1 = 0, and by observing that the intersection
of this plane with the boxes of B is constant between two
consecutive coordinates in the sorted list, determined en-
tirely by the boxes that precede Bi. If we write Vi,d−1 for
the (d−1)-dimensional volume of this intersection, then the
d-dimensional volume that lies between Bdi and Bdi+1 is pre-
cisely Vi,d−1 × (Bdi −Bdi+1).

The (d−1)-dimensional slice changes only when the sweep-
ing plane encounters a new box Bi, and thus we can com-
pute the d-dimensional volume of n boxes by maintaining the
(d− 1)-dimensional volume of their projections subject to n
insert-only updates. If the amortized update and query cost
is O(F (n)), then the d-dimensional problem can be solved
in time O(nF (n)) plus the preprocessing cost including the
initial sorting.

Reducing a Dimension by Weighting. Another concep-
tual way to reduce the dimension of the volume problem
is the following. Assuming again that the boxes of B are
grounded with respect to the dth dimension, we orthogo-
nally project each box Bi in B onto the plane xd = 0, ob-
taining a (d − 1)-dimensional box, denoted B′i, and assign
a weight w(B′i) = Bdi to this projected box. The weighted
volume of B′i is defined as w(B′i) times the (ordinary, (d−1)-
dimensional) volume of B′i. See Figure 1 for illustration.

This transformation converts the set B into a set B′ =
{B′1, B′2, . . . , B′n} of (d−1)-dimensional weighted boxes. For
each point x ∈ Rd−1

+ on the plane xd = 0, assign to it the
weight of the heaviest box containing x. That is,

w(x) = max{w(B′i) | x ∈ B′i}

Then the volume covered by the boxes in B is given by the
integral ∫

x∈R(d−1)

w(x) dlx

We call this expression the weighted volume of the union of
the set B′. Intuitively, this expression weights each point
x on the projection plane by the maximum height of a box
in B that contains it, thus correctly computing the volume
contribution of each box in B.

1xd denotes the dth coordinate of point x.



Joint Sweep and Weighting for 2-grounded Boxes. Sup-
pose B is a set of boxes, grounded along dimensions d and
d− 1, and that their orthogonal projection onto the dimen-
sions (d−1) and d has origin as the common corner. We can
now apply both of the above dimension-reduction techniques
simultaneously, as follows. We sweep the space along the
dth dimension, which requires us to dynamically maintain
the (d− 1)-dimensional volume of the set of boxes intersect-
ing the sweep plane. The updates are insert only because
boxes are only inserted, and never deleted. Depending on
that the boxes are grounded with respect to (d−1)th dimen-
sion, we maintain the dynamic (d − 1)-dimensional volume
by converting it to a weighted (d− 2)-dimensional volume.

Thus, the d-dimensional Klee’s Measure Problem is trans-
formed into a (d − 2) dimensional problem of maintaining
the weighted volume under insertion of boxes. Solving this
problem efficiently is the main contribution of this paper,
and the focus of the next three sections. In fact, the crux of
the problem proves to be the following special case:

Under insert-only updates, maintain the weighted volume
of a set of axis-parallel halfspaces.

In reality, we require the weighted volume of axis-parallel
strips, but generalizing the halfspace solution to strips is
relatively straightforward, incurring an extra logn factor in
complexity. In the interest of simplicity, therefore, we focus
on halfspace in the next two sections, and return to the strips
only in Section 4.4. For ease of presentation, we first describe
the halfspace algorithm in two dimensions (Section 3), and
then its generalization to higher dimensions. (Section 4).
Section 5 describes how to solve the general weighted vol-
ume by combining the strips problem with a space partition
technique.

3. WEIGHTED VOLUME OF
HALFSPACES: THE PLANAR CASE

We have a set H of n axis-parallel weighted halfplanes
in 2-space, each containing the origin, and a positive or-
thant axis-aligned rectangle R anchored at the origin. For a
point p in R, define the weight of p with respect to a subset
H′ ⊆ H, denoted w(p,H′), as the weight of the heaviest
halfplane in H′ that contains p; if no such halfplane exists,
then the weight is zero. The weighted volume (area) of H′
over R is

∫
p∈R w(p,H′) dlp . Our goal is to maintain the

weighted volume as H′ undergoes insert-only updates. We
will show a data structure with amortized cost of O(logn)
per insertion. The set of axis-aligned halfplanes in H′ is
naturally divided into two groups: vertical and horizontal.
The vertical halfplanes have the form 0 ≤ x1 ≤ a, and the
horizontal ones have the form 0 ≤ x2 ≤ b. We maintain the
weight distribution imposed by these two classes separately,
and then show how to compute the joint weight implicitly
and efficiently.

3.1 Vertical and Horizontal Gradients
The intersection of R with a halfplane H is a “strip,” ei-

ther vertical or horizontal, containing the origin. Let us
focus on the vertical halfplanes of H′, and consider the par-
tition they induce on R where each point of R is “claimed”
by the maximum weight halfplane containing it. This par-
tition is a sequence of vertical strips in which each strip
belongs entirely to one halfplane, each halfplane contributes

at most one strip, and the strips are ordered in descend-
ing weight order from left to right. This follows because all
halfplanes contain the origin, and a larger weight halfplane
completely overrides the smaller weight halfplane to its left.
Visually, the resulting structure looks like a “waterfall”, and
for ease of reference, we call it the vertical gradient.2 Sim-
ilarly, the horizontal halfplanes, considered in isolation, in-
duce a horizontal gradient of strips ordered in descending
order of weights from bottom to top. (Figure 2(a) shows an
example, where the vertical gradient consists of three strips
of respective weights w7 > w4 > w1, and respective widths
4.5, 3.5, and 5.)

The gradients give a nice and compact representation of
the weight structure imposed by the vertical and the hori-
zontal halfplanes separately. In order to compute the weigh-
ted volume of H′ over R, however, we need to intersect the
two gradients. An explicit intersection entails Ω(nd) com-
plexity in d-dimensions, and so the key is to perform this
intersection implicitly.

Let wi be the weight of the ith halfplane Hi ∈ H, and as-
sume that the halfplanes are ordered in the increasing order
of their weights. Without loss of generality, we assume that
the weights wi’s are distinct. We maintain two arrays, A1

and A2, storing the widths of the strips contributed by verti-
cal and horizontal halfplanes, respectively. Both the arrays
have size n, whose ith entries correspond to the halfplane
Hi. The entry A1[i] or A2[i] stores the width of the strip
contributed by Hi: if Hi is vertical, it contributes to A1[i],
otherwise to A2[i]. (A halfplane contributes to neither gra-
dient if it is dominated by heavier halfplanes, in which case
both the entries are zero.) (See Figure 2(b) for an illustra-
tion.)

Let L1, L2 be the dimensions of the rectangular region R.
Then it is easy to see that

∑
iA1[i] ≤ L1 and

∑
iA2[i] ≤ L2.

(The vertical strips whose widths populate A1 are disjoint,
and their sum cannot exceed the width of R.) Furthermore,
considering each gradient in isolation, the weighted volume
contribution of Hi is precisely wi× (A1[i] ·L2 + A2[i] ·L1):
this follows because only one of A1[i] or A2[i] can be non-
zero, and so this term is precisely the weighted area of the
rectangular strip of Hi.

The next problem is to determine how much of each gra-
dient is claimed by the other. We do that in the next sub-
section, but first let us consider how to maintain the arrays
A1 and A2 under insertion of new halfplanes. Consider an
update to A1; the horizontal case A2 is entirely symmet-
ric. When a vertical halfplane H, with weight w, is to be
inserted, we first determine its rank, namely, the index i
for the weight w in the ordered sequence w1, . . . , wn, which
can be done in O(logn) time. Suppose the rank of H is
i, namely, H ≡ Hi. Two changes occur in the gradient
structure: (1) some of the vertical strips that overlap with
Hi are deleted—in particular, those with weights less than
wi, and (2) the strip containing the vertical line defining Hi
“shrinks” in width. We can locate the strip to be shrunk
in logarithmic time by maintaining a binary search tree on
the strips, keyed by their position, and then appropriately
update its array value. Starting with that strip, we then
traverse the list of vertical strips to the left, deleting each
as long as their weights are less than wi. These strips are
deleted also from the search tree, in logarithmic time per

2This name is inspired by color gradients, which are images
with decreasing color intensity in one direction.
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Figure 2: (a) Illustrating the gradient structures. The vertical gradient has three strips, with weights in descending

order w7 > w4 > w1, and widths 4.5, 3.5 and 5, respectively. (b) The array representation of the two gradients shown in

(a). The halfplane H5 is either not inserted yet or covered by halfplanes with higher weights, and so its array entries

are zero. (c) Illustrating the “intersection” of the two gradients. The “light gray” (resp., “dark gray”) section shows

the portion where the weight of the vertical (resp., horizontal) gradient dominates. Recall that the halfplane with

larger index has higher weight than the one with smaller index.

strip. (We note that once a strip is deleted from the gradi-
ent, it is never reinserted.) We can easily compute the width
of the strip produced by Hi and write this value to A1[i],
leading to the following lemma.

Lemma 1. The arrays A1 and A2 representing the ver-
tical and horizontal gradients can be updated in O(logn)
amortized time after the insertion of a halfplane. The num-
ber of array entries whose values change is O(1) amortized.

3.2 Intersecting Gradient Volumes via Partial
Sums

The key problem now is to deduce the correct weighted
volume by overlapping the two gradients. Any point that
is covered by both the vertical and the horizontal gradients
should only be counted once, and receive the weight of the
heavier halfplane containing it. In particular, let V1 denote
the weighted volume contributed by the vertical gradient:
this is the weighted sum over the points where the vertical
halfplanes prevail. Similarly, V2 is the contribution of the
horizontal gradient. We claim that V1 has the following
form:

V1 =

n∑
i=1

(
wi ×A1[i]×

(
L2 −

n∑
j=i+1

A2[j]

))
This follows because

∑n
i=1 wi ·A1[i] ·L2 is the weighted vol-

ume without considering the horizontal gradient, and the
subtracted term is precisely what the horizontal gradient
claims away from vertical strips. More precisely, for the
halfplane Hi, the portion claimed by the horizontal gradi-
ent involves only those strips whose weight is larger than
wi, and if such a strip has “thickness” A2[j], then the area
claimed by the vertical strip away from Hi is A1[i] · A2[j].
(See Figure 2(c).) By subtracting the total over all such
horizontal strips leaves the portion that Hi contributes to
the final weighted volume. The complementary term V2 has
the similar form:

V2 =

n∑
i=1

(wi ×A2[i]× (L1 −
n∑

j=i+1

A1[j]))

We need to maintain these weighted volumes under insert-
only updates, which we do by using a dynamic partial sums
structure. Recall that the partial sums problem is the fol-
lowing:

Maintain an array A of size n under an inter-
mixed sequence of update and query operations,
where update(i,∆) changes A[i] to A[i] + ∆, and

query(k) reports the partial sum
∑k
i=1A[i].

Using a balanced binary tree, one can easily support these
operations in O(logn) time each using linear space. The
partial sums structure allows us to maintain our weighted
volumes V1 and V2 as the gradient structures change due to
insertion of new halfplanes. In particular, when a halfplane
insertion changes A1[i] by ∆, the value V1 changes by

wi ×∆× (L2 −
n∑

j=i+1

A1[j])

This requires computing the partial sum
∑n
i=j+1A1[j], which

is easily done by computing the partial sum query(j), and
subtracting it from query(n), in O(logn) time. On the other
hand, if the halfplane H changes the entry A2[j], then the

change in V1 is − (∆ ×
∑j−1
i=1 wi ×A1[i]). By maintain-

ing a partial sums structure for the array A[i] = wi ×A1[i],
this update can also be implemented in logarithmic time.
In summary, the disjoint weighted volume contributions V1

and V2 of the two gradients can be maintained at the cost
of O(logn) time per update, and we have the following key
result.

Theorem 1. The weighted volume of a set of axis-aligned
halfplanes in a rectangle R can be maintained in O(logn)



amortized time per insertion, with a linear-space data struc-
ture.

4. MULTIDIMENSIONAL WEIGHTED
VOLUME

In dimension d > 2, the basic idea is the same: we or-
ganize the halfspaces in d independent gradient structures,
which can be updated efficiently when a new halfspace is
added. The key difference from the two-dimensional prob-
lem arises in how we compute the final weighted volume by
intersecting the d gradients structures. Unlike the planar
case, where we only needed to compute partial sums, the
higher dimensional problems involves a more complex sum
of ordered products. We discuss the details of these sums in
the next two subsections, but first let us express the general
form of the d-dimensional gradients.

We have a set H of n axis-parallel weighted halfspaces,
each containing the origin, in d-space. We also have an or-
thogonal region R in the positive quadrant, anchored at the
origin. We wish to maintain the weighted volume of a sub-
set H′ ⊆ H over R, under insertions of halfspaces from H.
We maintain d gradient structures, where the jth structure,
denoted Gj , is formed by the halfspaces normal to the jth
axis, for j = 1, 2, . . . , d. The gradient Gj consists of strips,
in descending weight order, along the positive xj direction.
We represent Gj as an array Aj of size n, where the en-
try Aj [i] contains the width of the strip contributed by the
halfspace Hi to the gradient Gj , with weight wi. The array
indices are arranged in the increasing weight order of the
halfspaces. Each of these d arrays can be maintained at the
amortized cost of O(logn), per insertion of a halfspace, re-
quiring modifications to a constant (amortized) number of
array entries, using the technique of the previous section.

4.1 Intersecting the Gradients
Let us now consider how to maintain the weighted volume

of the current set of halfspaces H′, given the d gradient ar-
rays. Write the weighted volume as the sum V1 + · · · + Vd,
where Vj is the contribution by Gj to the total volume. We
show how to maintain V1; the others are analogous. In the
absence of the other gradients, the weighted volume induced
by a strip in G1 is simply the product of its weight, its width
and the (d− 1)-dimensional volume of its projection on the
plane x1 = 0. Formally, the weighted volume of ith strip
is wi ×A1[i]×

∏d
α=2 Lα, where Lα is the length of R along

the αth coordinate axis. But some of this volume is lost to
other gradients because of their higher weight. In particu-
lar, for a nonempty set S = {α1, . . . , αm} ⊆ {2, . . . , d}, let
Lossi(S) be the weighted volume of the ith strip in G1 that
is claimed by all of the gradients in the set {Gα1 , . . . , Gαm}.
In other words, Lossi(S) is the intersection of the weighted
volumes claimed by the gradients Gα1 , . . . , Gαm . We can
write Lossi(S) as wi × A1[i] times the (d − 1)-dimensional
volume on the plane x1 = 0 that is covered by the intersec-
tion of heavier subsections of the gradients Gα1 , . . . , Gαm .
Formally, we write

Lossi(S) = wi ×A1[i]×
∏

α∈{2,...,d}\S

Lα ×

∑
i<jα1≤n

Aα1 [jα1 ] × · · · ×
∑

i<jαm≤n

Aαm [jαm ]

Let Loss(S) be the portion of G1’s weighted volume (over
all of its strips) that is claimed by the intersection of the set
of gradients {Gα1 , . . . , Gαm}. Then, we clearly have

Loss(S)

=
∑

1≤i≤n

Lossi(S)

=
∑

1≤i≤n

(
wi ×A1[i]×

∏
α∈{2,...,d}\S

Lα ×

∑
i<jα1

≤n

Aα1 [jα1 ] × · · · ×
∑

i<jαm≤n

Aαm [jαm ]

)

=
∏

α∈{2,...,d}\S

Lα ×
∑

1≤i<jα1
,jα2

,...,jαm≤n

(
wi×

A1[i]×Aα1 [jα1 ]× · · · ×Aαm [jαm ]

)
The volume contributed by G1, namely, V1 can be written

as the quantity not claimed by any of the other gradients.
Using the inclusion-exclusion principle, we get

V1 =
∏

2≤α≤d

Lα ×
∑

1≤i≤n

wi ×A1[i] −

∑
S⊆{2,...,d}∧S 6=∅

(−1)|S|+1Loss(S)

In this expression, the product involving Lα’s is a con-
stant, while the sum

∑
1≤i≤n wi ×A1[i] is easily maintained.

The non-trivial term is the summation involving Loss, and
we observe that it contains (2d−1 − 1) inner terms of the
following general form:

C ×
∑

1≤i1<i2,i3,...,ik≤n

A1[i1]× · · · × Ak[ik],

where C is constant, the number of indices k is at most d,
and each array Aj [ ] corresponds to either a gradient array
or the array A[i] = wi × A1[i]. We further decompose each
term of the above form into (k − 1)! terms by grouping the
inner terms of the summation by the ordering of their indices
i2, . . . , ik. This yields at most (d− 1)× (d− 1)! terms of the
following form:3

C ×
∑

1≤i1<···<ik≤n

A1[i1]× · · · × Ak[ik].

Let us call this expression a sum of ordered products. All
we need now is a data structure that can maintain the sum
of ordered products efficiently as array entries are modified.
We show in the following subsection (Section 4.2) how to
maintain the sum of ordered products in O(logn) time per
update and O(1) time per query, which is sufficient for the
following key theorem for the weighted volume of halfspaces
in any fixed dimension d.

Theorem 2. The weighted volume of a set of axis-aligned
halfspaces in a rectangular box R in d dimensions can be

3By distinct weight assumption, all inner terms that contain
equal indices are 0, and so we can safely ignore them.



maintained in O(logn) amortized time per insertion, with a
linear-space data structure.

4.2 Maintaining the Sum of Ordered Products
Given d arrays Ai, i = 1, 2, . . . , d, each of size n, we want

to efficiently maintain the following sum of ordered products,
under updates to individual array entries:∑

1≤i1<...<id≤n

A1[i1]× . . .×Ad[id]

For simplicity, let us assume that n is a power of two. For
0 ≤ j ≤ logn and 1 ≤ k ≤ n/2j , let S(j, k) denote the
set of consecutive integers in the range [(k − 1)2j + 1, k2j ].
Observe that S(0, k) = {k} and S(logn, 1) = {1, . . . , n}.
Moreover, S(j, k) is the concatenation of S(j − 1, 2k − 1)
and S(j − 1, 2k), for j ≥ 1. Conceptually, S represents a
hierarchically ordered binary partition of the set {1, . . . , n}
into singleton integers. If the partition is viewed as a tree,
then S(j, k) refers to the kth node from the left at the jth
level and it is the parent of S(j−1, 2k−1) and S(j−1, 2k).

Let T (j, k, l, r) denote the following sum of ordered prod-
ucts ∑

il<...<ir ∧ il,...,ir∈S(j,k)

Al[il]× . . .×Ar[ir],

where 0 ≤ j ≤ logn, 1 ≤ k ≤ n/2j and 1 ≤ l ≤ r ≤ d. We
observe that T (logn, 1, 1, d) is the sum of ordered products
that we want to maintain. Additionally, T (0, k, l, l) = Al[k]
and T (0, k, l, r) = 0 for l 6= r. For j ≥ 1, we can write
T (j, k, l, r) in terms of T () values whose first parameter is
(j − 1), as shown in the following lemma.

Lemma 2. For j ≥ 1, we have the following recurrence:

T (j, k, l, r) = T (j − 1, 2k − 1, l, r) + T (j − 1, 2k, l, r) +∑
l≤c<r

(
T (j − 1, 2k − 1, l, c)× T (j − 1, 2k, c+ 1, r)

)
Proof. See Appendix A.

We maintain T () values in a table: for each valid selec-
tion of (j, k, l, r), the table has an entry storing T (j, k, l, r).
Then, a query can be answered in O(1) time by reporting
T (logn, 1, 1, d). Moreover, it is easy to show that the table
has O(n) entries. When an array entry Al[k] is updated,
we update the table entry for T (0, k, l, l) and the table en-
tries for all T () values that are dependent on T (0, k, l, l)
through the recurrence relation given in Lemma 2. Notice
that updating an entry takes constant time, assuming d is
a constant. It can be easily seen that for a constant value
of j, there are at most d +

(
d
2

)
table entries dependent on

T (0, k, l, l). Thus, assuming d is a constant, O(logn) entries
are updated in total. This leads to the following theorem.

Theorem 3. The sum of ordered products of d arrays of
size n can be maintained with an update time of O(logn),
query time of O(1), using a linear-space data structure.

4.3 Higher Order Partial Sums and Sum of
Ordered Products

The reader will notice that the partial sum problem uti-
lized in the halfplane solution is replaced by sum of ordered
products in higher dimensions, suggesting a link between the

two problems. In fact, the sum of ordered products can be
viewed as an iterated or higher-order generalization of the
classical partial sum problem.

Given an array A of n numbers, the basic partial sum
problem, addresses the following query operation: report
query(k) =

∑k
i=1A[i]. There are n different partial sum

queries, for 1 ≤ k ≤ n, and one can view them as forming
another array A′[k] = query(k). We can then ask the partial
sum problem on A′, which could be considered the second
order partial sum of A. An iterated application of this pro-
cess leads to higher order partial sums, with the following
general form.

Given an array A of size n, its kth partial sum of
order d, denoted Pd(k), is defined recursively as
follows:

Pd(k) =

{∑k
i=1A[i] if d = 1∑k
i=1 Pd−1(i) if d > 1

Considering the d arrays A1, . . . ,Ad of size n, the following
definition is a further generalization of the iterated partial
sums problem for A1:

Given d arrays A1, . . . ,Ad of size n, their kth
weighted partial sum, denoted Wd(k), is defined
as follows:

Wd(k) =

{∑k
i=1A1[i] if d = 1∑k
i=1Ad[i]×Wd−1(i) if d > 1

The following lemma shows that the sum of ordered prod-
ucts is actually a weighted partial sum.4

Lemma 3. For d arrays A1, . . . ,Ad,

Wd(n) =
∑

1≤i1≤···≤id≤n

A1[i1]× · · · × Ad[id]

Proof. By induction. The lemma clearly holds for d = 1.
For d > 1,

Wd(n) =

n∑
i=1

Ad[i]×Wd−1(i)

=

n∑
i=1

(
Ad[i]×

∑
1≤i1≤···≤id−1≤i

A1[i1]× · · ·×

Ad−1[id−1]

)
=

∑
1≤i1≤···≤id≤n

A1[i1]× · · · × Ad[id]

Our sum of ordered products structure can be easily used
to maintain weighted (or iterated) partial sums of d arrays
A1, . . . ,Ad. Let Ad+1 be an additional array such that
Ad+1[i] = 0 for all i. Then, the weighted partial sum Wd(i)
can be obtained by simply incrementing Ad+1[i] by 1 and
then querying for the sum of ordered products of the set
{A1, . . . ,Ad+1}.
4For simplicity of presentation only, we allow the indices
in the sum of products to be equal. The original sum of
products with strictly ordered indices can be easily reduced
to this form by shifting arrays.



4.4 Weighted Volume of Axis-parallel Strips
The weighted volume algorithm given in Section 5 requires

us to maintain the weighted volume of a structure known as
a trellis, which consists of axis-parallel strips in the form
a ≤ xk ≤ b, rather than halfspaces of the form xk ≤ b. Our
technique for maintaining the volume of the halfspaces also
works for trellises, by maintaining separate arrays for strips
orthogonal to each axis. We utilize a standard data structure
known as a segment tree to maintain each of these arrays. In
particular, the segment tree used to maintain the array for
the strips orthogonal to the ith axis stores the projections
of these strips on the ith coordinate axis as one-dimensional
weighted intervals. Note that the segment tree stores each
interval in O(logn) of its nodes, which conceptually par-
titions the interval into O(logn) subintervals. (See [4] for
details on segment trees.)

The length dominated by each interval (which corresponds
to the array entry of its strip) can then be maintained in
O(logn) amortized time per strip insertion. Briefly, this
is achieved by deleting the subintervals that are subsumed
(both in extent and in weight) by the inserted interval during
insertions. The implication of this policy is an invariant that
along a root-to-leaf path in the tree, the interval entries are
stored in ascending weight order. It then becomes trivial to
compute the contribution of each interval to the array via a
recursive relation on the nodes. We defer the details of this
algorithm to Section 5, where we apply it to a “binary space
partition tree” rather than a segment tree.

Each strip insertion affects O(logn) array entries amor-
tized. This follows from the fact that each inserted interval
is stored on O(logn) nodes in the tree, with O(logn) total
ancestors. The array contribution of the lower weight inter-
vals stored in these O(logn) ancestors are possibly modified,
whereas the contributions of the lower weight intervals in all
remaining nodes are deleted, for which we charge to their
corresponding insertions.

Each array entry change is coupled with an O(logn) time
update in our sums of ordered products structure. It fol-
lows that we can maintain the weighted volume of strips in
O(log2 n) amortized time per insertion. We can now state
the following theorem.

Theorem 4. The weighted volume of a set of axis-aligned
strips in a rectangular box R in d dimensions can be main-
tained in O(log2 n) amortized time per insertion, with a
linear-space data structure.

We finally note that we also need an elimination operation
as part of the main algorithm described in Section 5. In
this elimination operation, we delete all strips with weights
less than a given weight w. This can be easily achieved by
doing a binary search on the weights to identify the strips
to delete and then deleting the corresponding intervals from
the segment trees. As usual, we can charge the deletions
to the corresponding insertions, thus this operation can be
achieved in O(log2 n) amortized time as well.

5. DYNAMIC WEIGHTED VOLUME FOR
ARBITRARY BOXES

We now argue that the weighted volume of n arbitrary
boxes in d-space, can be maintained under insert-only up-
dates in O(n(d−1)/2 log2 n) amortized time. For simplicity,
we describe a detailed solution only for the two-dimensional

case. The extension of this solution to higher dimensions is
straightforward as we mention later.

Let B be a set of n weighted boxes in 2-space. Our ob-
jective is to maintain the weighted volume of a dynamic set
of boxes that undergoes insertions from B. We propose a
structure that achieves this in O(

√
n log2 n) amortized time

per update.
The main idea of our solution is to partition the space

into rectangular regions such that the set of boxes, B, forms
a set of axis-parallel strips inside each region. This enables
us to use the specialized structure defined in Section 4.4 to
efficiently maintain the overall weighted volume. To form
this partition, we follow a classical technique by Overmars
and Yap [15].

The partition is formed as follows. We draw a vertical line
through each

√
n-th vertical boundary of the boxes along

the first coordinate (horizontal) axis. As a result, the space
is divided into Θ(

√
n) slabs, each of which contain Θ(

√
n)

boundaries. We then individually divide each slab further
by drawing a horizontal line through: (1) each box corner in
the slab and, (2) each

√
n-th horizontal boundary of boxes

passing through the slab. Consequently, each slab is parti-
tioned into Θ(

√
n) final regions. We call these final regions

cells. The following lemma summarizes the properties of the
partition and its proof can be found in [15].

Lemma 4. The partition has the following properties.

• There are O(n) cells.

• Any box intersects O(
√
n) cells on its boundary.

• Each cell intersects the boundary of O(
√
n) boxes in B.

• The boxes of B contain no corner in the interior of any
cell.

The last property implies that B forms a set of strips inside
each cell. As the first key part of our algorithm, we main-
tain, for each cell C, the weighted volume on C contributed
only by the boxes that intersect C on their boundary. We
do this by utilizing an instance of the strips structure de-
fined in Section 4.4 for each cell. By Lemma 4, there are
O(
√
n) boxes that intersects any cell on its boundary, thus,

the size of each strip structure is O(
√
n). Also, during the

insertion of a box B, we can update all strip structures in
O(
√
n log2 n) amortized time, because B intersects O(

√
n)

cells on its boundary and updating the strip structure of
each of these cells takes O(log2 n) time. We note that the
cells lying on the boundary of B can be efficiently obtained
by using the partition tree that we describe below.

Clearly, the weighted volumes maintained in the cells ex-
clude the contributions of the boxes that entirely contain
the cells. The second key part of our algorithm is to include
these contributions so that the overall weighted volume is
correctly maintained. To do this efficiently, we utilize a bi-
nary space partition tree. In particular, we maintain a bal-
anced binary tree in which every node v is associated with a
rectangular region of the space Rv, such that for all internal
nodes v with children vl and vr, Rv is divided into Rvl and
Rvr by an axis-aligned hyperplane. Moreover, the root is
associated with the whole space and each leaf is associated
with one cell of our partition bijectively. It is trivial to show
that such a balanced space partition tree can be constructed
in O(n logn) time.



When a box B is inserted to the structure, we store an
entry for B at every node v such that B subsumes Rv but
not Rparent(v). This storage scheme conceptually partitions
B into a set of maximal fragments, where each fragment
is the intersection B ∩ Rv for a node v that B is stored.
Note that this fragmentation excludes the sections of B that
partially overlap the cells, which are already stored in the
corresponding strip structures. It can easily be shown that
B is stored in O(

√
n logn) nodes in the tree and these nodes

can be traversed in O(
√
n logn) steps. [15]

For efficient weighted volume maintenance, we remove any
box fragments that are entirely contained by boxes of higher
weight. In particular, when we insert a box entryB to a node
v, we delete all box entries B′ stored below v such that
w(B′) < w(B). Note that the deleted fragments have no
contribution to the weighted volume because they are con-
tained by a heavier box, and thus they are safe to be deleted.
Similarly, for each cell that a newly inserted box contains,
we delete all lower weight boxes in the corresponding strip
structure. Finally, we keep only the highest weight box at
each node. The result of this policy is an invariant that for
any particular box B at a node v, all boxes stored above v
have lower weights while all boxes stored below (including
the strip structures) have higher weights. Consequently, the
weighted volumes of the strip structures directly contribute
to the overall. Moreover, we can write the weighted volume
contribution of a box B stored at node v as

w(B)× (|Rv| −A(v))

where |Rv| is the ordinary volume (area) of region Rv and
A(v) is the ordinary volume of the union of the boxes stored
below v (including the strip structures). Note that A(v)
equals the volume that is claimed from B by higher weight
fragments, which are all stored below v. The maintenance of
A(v) for leaf nodes can be done trivially due to the simplicity
of the strips arrangement [15]. For each internal node v with
children vl and vr, A(v) can be written recursively in terms
of A(vl) and A(vr), and thus can easily be updated during
the tree traversals. (See [15] for details.)

The overall weighted volume is easily maintained as the
sum of weighted volume contributions of each strip struc-
ture and each box entry in the tree. It remains to show
that removing lower weight box entries during insertions do
not increase the overall amortized cost of O(

√
n log2 n) per

insertion. Recall that the tree traversal performed to in-
sert a box takes O(

√
n logn) steps. To efficiently delete the

lower weight boxes after an insertion, we maintain at each
node v, the weight of the lowest weight box stored below
v. This makes it possible to directly traverse to the box
entries to be deleted. The additional traversals performed
to delete the entries can be charged to the traversals which
inserted these entries. Specifically, the traversal of within
a subtree that contains entries of a lower weight box B is
charged to the traversal of the same subtree during the in-
sertion of B. Thus, the amortized cost of a box insertion
remains O(

√
n log2 n).

One can easily prove that the partition tree and the strip
structures can be constructed in O(n

√
n logn) time and con-

sume O(n
√
n) space. This yields to the following theorem.

Theorem 5. There exists a data structure that maintains
the weighted volume of n 2-dimensional boxes in O(

√
n log2 n)

amortized time per insertion. This structure can be con-
structed in O(n

√
n logn) time and consumes O(n

√
n) space.

The partition technique of [15] is generalized to higher
dimensions as given in the following lemma.

Lemma 5. Given a set B of n axis-aligned boxes in d-
space, one can partition the space into cells such that

• There are O(nd/2) cells.

• Any box intersects O(n(d−1)/2) cells on its boundary.

• Each cell intersects the boundary of O(n(d−1)/2) boxes
in B.

• No cell contains a (d−2)-dimensional facet of any box
in its interior.

By applying the partition tree algorithm together with d-
dimensional strip structures, we deduce the following result.

Theorem 6. We can maintain the weighted volume of
a set of n d-dimensional boxes in O(n(d−1)/2 log2 n) amor-
tized time per box insertion. This data structure can be con-
structed in O(n(d+1)/2 logn) time using O(n(d+1)/2) space.

Computing the Klee’s measure for 2-grounded boxes in
d-space requires n box insertions into a (d− 2)-dimensional

structure, for the total complexity of O(n·n(d−3)/2 log2 n) =

O(n(d−1)/2 log2 n), giving us the main result of our paper.

Theorem 7. Klee’s measure for n 2-grounded boxes in d-
space can be computed in worst-case time O(n(d−1)/2 log2 n)

and space O(n(d−1)/2).

6. KLEE’S MEASURE FOR d-GROUNDED
BOXES

When the boxes are d-grounded, namely, they are all an-
chored at a common corner, the time complexity of our al-
gorithm improves by a factor of logn. This follows from
the fact that the Overmars-Yap partition, when applied on
d-grounded boxes, yields to regions that contain half-spaces
rather than strips. By Theorem 2, we can maintain weighted
volume of each region in O(logn) time per update (improv-
ing on O(log2 n) for strips), reducing the running time of

our algorithm to O(n(d−1)/2 logn). The d-grounded case
of the problem is also known as the hypervolume indicator
problem, which is utilized in evolutionary computing often
to assess the quality of multi-objective optimization algo-
rithms. Several techniques in the computational geometry
literature can be used solve the problem efficiently. The cur-
rent best bounds with respect to the number of dimensions
are as follows:

• For d ≤ 3, O(n logn), based on space-sweep [11].

• For d = 4, O(n3/2polylog n) by Chan [7], using reduc-
tion to unit-cubes.

• For d = 5, O(n2polylog n) by Kaplan et al. [13].

• For d ≥ 6, O(n(d+2)/3) by Bringmann [5], using reduc-
tion to fat-boxes.

Compared to the above results, our algorithm is faster in
dimensions 4, 5 and 6, improving the bound for computing
the hypervolume indicator in these dimensions, and using a
simpler approach.



7. CONCLUSION
We have proposed a new method for computing Klee’s

measure on grounded boxes, which includes the hypervol-
ume indicator as a special case. In particular, we obtained a
bound of O(n(d−1)/2 log2 n) for the k-grounded problem for
2 ≤ k < d, which is an improvement of roughly

√
n over the

general Klee’s bound. Our technique also leads to a faster
algorithm for the hypervolume indicator, which is a special
case of the grounded boxes, in dimensions 4, 5 and 6. Given
the long and distinguished history of Klee’s measure prob-
lem, where all the previous improvements have been limited
to cube-like boxes, the grounded boxes offer an interesting
new direction to pursue.
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APPENDIX

A. PROOF OF LEMMA 2
A member of S(j, k) is either a member of S(j−1, 2k−1) or S(j−1, 2k). We can, therefore, decompose T (j, k, l, r) into sums
of products based on the sets to which the indices belong, as follows:

T (j, k, l, r) =
∑

il<...<ir ∧ il,...,ir∈S(j−1,2k−1)

Al[il]× . . .×Ar[ir]

+
∑

il<...<ir ∧ il,...,ir∈S(j−1,2k)

Al[il]× . . .×Ar[ir]

+
∑
l≤c<r

 ∑
il<...<ir ∧ il,...,ic∈S(j−1,2k−1) ∧ ic+1,...,ir∈S(j−1,2k)

Al[il]× . . .×Ar[ir]


By the distributive property of multiplication over addition, we get

T (j, k, l, r) =
∑

il<...<ir ∧ il,...,ir∈S(j−1,2k−1)

Al[il]× . . .×Ar[ir]

+
∑

il<...<ir ∧ il,...,ir∈S(j−1,2k)

Al[il]× . . .×Ar[ir]

+
∑
l≤c<r


∑
il<...<ic ∧ il,...,ic∈S(j−1,2k−1)Al[il]× . . .×Ac[ic]

×∑
ic+1<...<ir ∧ ic+1,...,ir∈S(j−1,2k)Ac+1[ic+1]× . . .×Ar[ir]


This expression is equivalent to

T (j, k, l, r) = T (j − 1, 2k − 1, l, r) + T (j − 1, 2k, l, r)

+
∑
l≤c<r

(T (j − 1, 2k − 1, l, c)× T (j − 1, 2k, c+ 1, r))

The lemma follows.


