skip to main content
10.1145/2261250.2261289acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

A deterministic o(m log m) time algorithm for the reeb graph

Published: 17 June 2012 Publication History

Abstract

We present a deterministic algorithm to compute the Reeb graph of a PL real-valued function on a simplicial complex in O(m log m) time, where m is the size of the 2-skeleton. The problem reduces to dynamic graph connectivity. We obtain the running time by using offline graph connectivity which assumes that the sequence of operations is known in advance. The algorithm is implemented and experimental results are given. In addition, we reduce the offline graph connectivity problem to computing the Reeb graph.

References

[1]
U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and S. L. M. Woo. Dynamizing static algorithms, with applications to dynamic trees and history independence. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete algorithms, SODA '04, pages 531--540, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.
[2]
S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup. Maintaining information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1:243--264, October 2005.
[3]
G. Aujay, F. Hétroy, F. Lazarus, and C. Depraz. Harmonic skeleton for realistic character animation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '07, pages 151--160, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.
[4]
D. Bespalov, W. C. Regli, and A. Shokoufandeh. Reeb graph based shape retrieval for cad. ASME Conference Proceedings, 2003(36991):229--238, 2003.
[5]
S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, and M. Spagnuolo. Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv., 40(4):12:1--12:87, Oct. 2008.
[6]
S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and applications. Theoretical Computer Science, 392(1--3):5 -- 22, 2008. Computational Algebraic Geometry and Applications.
[7]
H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Computational Geometry, 24(2):75 -- 94, 2003.
[8]
K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in reeb graphs of 2-manifolds. In Proceedings of the Nineteenth Annual Symposium on Computational Geometry, SCG '03, pages 344--350, New York, NY, USA, 2003. ACM.
[9]
T. K. Dey and Y. Wang. Reeb graphs: approximation and persistence. In Proceedings of the 27th Annual ACM Symposium on Computational Geometry, SoCG '11, pages 226--235, New York, NY, USA, 2011. ACM.
[10]
H. Doraiswamy and V. Natarajan. Efficient algorithms for computing reeb graphs. Computational Geometry, 42(6--7):606 -- 616, 2009.
[11]
H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and J. Snoeyink. Time-varying reeb graphs for continuous space-time data. Computational Geometry, 41(3):149 -- 166, 2008.
[12]
H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb spaces of piecewise linear mappings. In Proceedings of the Twenty-fourth Annual Symposium on Computational Geometry, SCG '08, pages 242--250, New York, NY, USA, 2008. ACM.
[13]
D. Eppstein. Offline algorithms for dynamic minimum spanning tree problems. J. Algorithms, 17(2):237--250, Sept. 1994.
[14]
I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi. Volume data mining using 3d field topology analysis. IEEE Comput. Graph. Appl., 20:46--51, September 2000.
[15]
W. Harvey, Y. Wang, and R. Wenger. A randomized O(m log m) time algorithm for computing reeb graphs of arbitrary simplicial complexes. In Proceedings of the 2010 Annual Symposium on Computational Geometry, SoCG '10, pages 267--276, New York, NY, USA, 2010. ACM.
[16]
M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic similarity estimation of 3d shapes. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '01, pages 203--212, New York, NY, USA, 2001. ACM.
[17]
J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48:723--760, July 2001.
[18]
P. Kanongchaiyos and Y. Shinagawa. Articulated reeb graphs for interactive skeleton animation. Modeling Modeling Multimedia Information and System, pages 451--467, 2000.
[19]
M. Natali, S. Biasotti, G. Patane, and B. Falcidieno. Graph-based representations of point clouds. Graphical Models, 73(5):151--164, 2011.
[20]
V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust on-line computation of reeb graphs: simplicity and speed. ACM Trans. Graph., 26, July 2007.
[21]
M. Patrascu and E. D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM J. Comput., 35:932--963, April 2006.
[22]
I. Rekleitis, V. Lee-Shue, and H. Choset. Limited communication, multi-robot team based coverage. IEEE International Conference on Robotics and Automation 2004 Proceedings ICRA 04 2004, 4(April):3462--3468, 2004.
[23]
Y. Shi, R. Lai, S. Krishna, N. Sicotte, I. Dinov, and A. W. Toga. Anisotropic laplace-beltrami eigenmaps: Bridging reeb graphs and skeletons. Computer Vision and Pattern Recognition Workshop, 0:1--7, 2008.
[24]
Y. Shinagawa and T. L. Kunii. Constructing a reeb graph automatically from cross sections. IEEE Computer Graphics and Applications, 11:44--51, 1991.
[25]
D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer and System Sciences, 26(3):362--391, 1983.
[26]
D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM, 32:652--686, July 1985.
[27]
R. E. Tarjan and R. F. Werneck. Self-adjusting top trees. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '05, pages 813--822, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.
[28]
R. E. Tarjan and R. F. Werneck. Dynamic trees in practice. J. Exp. Algorithmics, 14:5:4.5--5:4.23, January 2010.
[29]
M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC '00, pages 343--350, New York, NY, USA, 2000. ACM.
[30]
J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees. IEEE Transactions on Visualization and Computer Graphics, 15:1177--1184, 2009.
[31]
T. Tung and F. Schmitt. The augmented multiresolution reeb graph approach for content-based retrieval of 3d shapes. International Journal of Shape Modeling, 11(1):91--120, 2005.
[32]
Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. Removing excess topology from isosurfaces. ACM Trans. Graph., 23:190--208, April 2004.

Cited By

View all
  • (2024)Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams)IEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333475530:9(6390-6406)Online publication date: Sep-2024
  • (2024)Wasserstein Dictionaries of Persistence DiagramsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333026230:2(1638-1651)Online publication date: Feb-2024
  • (2024)Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for Scalar Data – An Algorithm and a BenchmarkIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.323800830:4(1897-1915)Online publication date: Apr-2024
  • Show More Cited By

Index Terms

  1. A deterministic o(m log m) time algorithm for the reeb graph

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SoCG '12: Proceedings of the twenty-eighth annual symposium on Computational geometry
    June 2012
    436 pages
    ISBN:9781450312998
    DOI:10.1145/2261250
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 June 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. PL topology
    2. algorithms
    3. graph connectivity
    4. reeb graph

    Qualifiers

    • Research-article

    Conference

    SoCG '12
    SoCG '12: Symposium on Computational Geometry 2012
    June 17 - 20, 2012
    North Carolina, Chapel Hill, USA

    Acceptance Rates

    Overall Acceptance Rate 625 of 1,685 submissions, 37%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)15
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 08 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams)IEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333475530:9(6390-6406)Online publication date: Sep-2024
    • (2024)Wasserstein Dictionaries of Persistence DiagramsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333026230:2(1638-1651)Online publication date: Feb-2024
    • (2024)Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for Scalar Data – An Algorithm and a BenchmarkIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.323800830:4(1897-1915)Online publication date: Apr-2024
    • (2024)On the shape description of general solids using Morse theoryComputers & Graphics10.1016/j.cag.2024.103994(103994)Online publication date: Jun-2024
    • (2023)Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)IEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.321500129:2(1573-1589)Online publication date: 1-Feb-2023
    • (2023)ReeBundle: A Method for Topological Modeling of White Matter Pathways Using Diffusion MRIIEEE Transactions on Medical Imaging10.1109/TMI.2023.330604942:12(3725-3737)Online publication date: Dec-2023
    • (2022)Wasserstein Distances, Geodesics and Barycenters of Merge TreesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311483928:1(291-301)Online publication date: Jan-2022
    • (2022)Topological Analysis of Ensembles of Hydrodynamic Turbulent Flows An Experimental Study2022 IEEE 12th Symposium on Large Data Analysis and Visualization (LDAV)10.1109/LDAV57265.2022.9966403(1-11)Online publication date: 16-Oct-2022
    • (2021)Generalized persistence diagrams for persistence modules over posetsJournal of Applied and Computational Topology10.1007/s41468-021-00075-1Online publication date: 5-Aug-2021
    • (2019)Propagate and Pair: A Single-Pass Approach to Critical Point Pairing in Reeb GraphsAdvances in Visual Computing10.1007/978-3-030-33720-9_8(99-113)Online publication date: 21-Oct-2019
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media