skip to main content
10.1145/2324796.2324858acmconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
research-article

A RELIEF-based modality weighting approach for multimodal information retrieval

Published: 05 June 2012 Publication History

Abstract

Despite the extensive number of studies for multimodal information fusion, the issue of determining the optimal modalities has not been adequately addressed yet. In this study, a RELIEF-based multimodal feature selection approach (RELIEF-RDR) is proposed. The original RELIEF algorithm is extended for weaknesses in three major issues; multi-labeled data, noise and class-specific feature selection. To overcome these weaknesses, discrimination based weighting mechanism of RELIEF is supported with two additional concepts; representation and reliability capabilities of features, without an increase in computational complexity. These capabilities of features are exploited by using the statistics on dissimilarities of training instances. The experiments conducted on TRECVID 2007 dataset validated the superiority of RELIEF-RDR over RELIEF.

References

[1]
P. K. Atrey, M. S. Kankanhalli, and J. B. Oommen. Goal-oriented optimal subset selection of correlated multimedia streams. ACM Trans. Multimedia Comput. Commun. Appl., 3, February 2007.
[2]
B. Mathieu, S. Essid, T. Fillon, J. Prado, and G. Richard. Yaafe, an easy to use and efficient audio feature extraction software, 2010. Proceedings of the 11th ISMIR conference, Utrecht, Netherlands.
[3]
E. Bruno and S. Marchand-Maillet. Multimodal preference aggregation for multimedia information retrieval. Journal of Multimedia, 4(5):321--329, 2009.
[4]
T. G. Dietterich. Machine-learning research: Four current directions. The AI Magazine, 18(4):97--136, 1998.
[5]
F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative study of techniques for large-scale feature selection, 1994. Pattern Recognition in Practice IV, Multiple Paradigms, Comparative Studies and Hybrid Systems.
[6]
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157--1182, Mar. 2003.
[7]
M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning. PhD thesis, Dept. of Computer Science, Univ. of Waikato, New Zealand, Apr. 1999.
[8]
E. B. Hunt, P. J. Stone, and J. Marin. Experiments in induction/Earl B. Hunt, Janet Marin, Philip J. Stone. Academic Press, New York:, 1966.
[9]
A. Jain, K. Nandakumar, and A. Ross. Score normalization in multimodal biometric systems. Pattern Recognition, 38(12):2270--2285, 2005.
[10]
A. K. Jain, R. P. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22:4--37, 2000.
[11]
A. Jakulin and I. Bratko. Analyzing attribute dependencies. In N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski, editors, PKDD, volume 2838 of LNCS, pages 229--240. Springer, 2003.
[12]
M. Kankanhalli, J. Wang, and R. Jain. Experiential sampling on multiple data streams. Multimedia, IEEE Transactions on, 8(5):947--955, 2006.
[13]
K. Kira and L. A. Rendell. A practical approach to feature selection. In Proc. of the 9th Int. Workshop on Machine Learning, ML '92, pages 249--256, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.
[14]
J. Kittler. Feature Set Search Algorithms. Pattern Recognition and Signal Processing, pages 41--60, 1978.
[15]
J. Kludas, E. Bruno, and S. Marchand-Maillet. Information fusion in multimedia information retrieval. In Proc. of 5th Int. Workshop on Adaptive Multimedia Retrieval (AMR), Paris, France, July 5--6 2007.
[16]
J. Kludas, E. Bruno, and S. Marchand-Maillet. Can feature information interaction help for information fusion in multimedia problems? Multimedia Tools Appl., 42:57--71, March 2009.
[17]
I. Kononenko. Estimating attributes: analysis and extensions of relief. In Proc. of European Conf. on Machine Learning, pages 171--182, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.
[18]
H. Liu, H. Motoda, and L. Yu. A selective sampling approach to active feature selection. Artif. Intell., 159:49--74, November 2004.
[19]
J. Martínez. Mpeg-7 overview (version 10). Requirements ISO/IEC JTC1/SC29/WG11 N6828, International Organisation For Standardisation, Oct 2003.
[20]
P. Atrey, M. Hossain, A. E. Saddik, M. Kankanhalli. Multimodal fusion for multimedia analysis: a survey. Multimedia Systems, 16:345--379, 2010.
[21]
MPEG. Mpeg-7 reference software experimentation model, 2003. http://standards.iso.org/ittf/PubliclyAvailableStandards/c035364_ISO_IEC_15938-6(E)_Reference_Software.zip.
[22]
P. Over, G. Awad, W. Kraaij, and A. F. Smeaton. Trecvid 2007-overview. In TRECVID'07, 2007.
[23]
B. B. Pineda-Bautista, J. A. Carrasco-Ochoa, and J. F. M. Trinidad. General framework for class-specific feature selection. Expert Syst. Appl., 38(8):10018--10024, 2011.
[24]
N. Poh and J. Kittler. Multimodal Information Fusion: Theory and Applications for Human-Computer Interaction, chapter 8, pages 153--169. Academic Press, 2010.
[25]
J. R. Quinlan. Induction of decision trees. Mach. Learn., 1:81--106, March 1986.
[26]
M. Robnik-Sikonja and I. Kononenko. An adaptation of relief for attribute estimation in regression. In D. H. Fisher, editor, ICML, pages 296--304. Morgan Kaufmann, 1997.
[27]
M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn., 53:23--69, October 2003.
[28]
Y. Saeys, I. n. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23:2507--2517, September 2007.
[29]
G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun. ACM, 18:613--620, November 1975.
[30]
M. R. Sikonja. Speeding up relief algorithm with k-d trees. In Proceedings of Electrotehnical and Computer Science Conference (ERK'98), pages 137--140, 1998.
[31]
L. Snidaro, R. Niu, G. Foresti, and P. Varshney. Quality-based fusion of multiple video sensors for video surveillance. SMC-B: Cybernetics, IEEE Trans. on, 37(4):1044--1051, 2007.
[32]
C. G. M. Snoek and M. Worring. Multimodal video indexing: A review of the state-of-the-art. Multimedia Tools and Applications, 25(1):5--35, 2005.
[33]
Y. Sun. Iterative relief for feature weighting: Algorithms, theories, and applications. IEEE Trans. Pattern Anal. Mach. Intell., 29(6):1035--1051, 2007.
[34]
L. Wang, N. Zhou, and F. Chu. A general wrapper approach to selection of class-dependent features. IEEE Transactions on Neural Networks, 19(7):1267--1278, 2008.
[35]
Y. Wu, E. Y. Chang, K. C.-C. Chang, and J. R. Smith. Optimal multimodal fusion for multimedia data analysis. In Proc. of the 12th ACM Multimedia, pages 572--579, New York, NY, USA, 2004. ACM.
[36]
T. Yilmaz, A. Yazici, and Y. Yildirim. Exploiting class-specific features in multi-feature dissimilarity space for efficient querying of images. In FQAS, pages 149--161, 2011.

Cited By

View all
  • (2014)RELIEF-MMMultimedia Systems10.1007/s00530-014-0360-620:4(389-413)Online publication date: 1-Jul-2014
  • (2012)Multimodal Information Fusion for Semantic Video AnalysisInternational Journal of Multimedia Data Engineering and Management10.4018/jmdem.20121001033:4(52-74)Online publication date: 1-Oct-2012

Index Terms

  1. A RELIEF-based modality weighting approach for multimodal information retrieval

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ICMR '12: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval
      June 2012
      489 pages
      ISBN:9781450313292
      DOI:10.1145/2324796
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 05 June 2012

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. RELIEF
      2. feature weighting
      3. multimodal information fusion

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      ICMR '12
      Sponsor:

      Acceptance Rates

      ICMR '12 Paper Acceptance Rate 50 of 145 submissions, 34%;
      Overall Acceptance Rate 254 of 830 submissions, 31%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 05 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2014)RELIEF-MMMultimedia Systems10.1007/s00530-014-0360-620:4(389-413)Online publication date: 1-Jul-2014
      • (2012)Multimodal Information Fusion for Semantic Video AnalysisInternational Journal of Multimedia Data Engineering and Management10.4018/jmdem.20121001033:4(52-74)Online publication date: 1-Oct-2012

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media