skip to main content
10.1145/2331684.2331712acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for optimization problems

Published:07 June 2012Publication History

ABSTRACT

With many applications in engineering and in scientific fields, quantifier elimination (QE) has been attracting more attention these days. Cylindrical algebraic decomposition (CAD) is used as a basis for a general QE algorithm. We propose an effective symbolic-numeric cylindrical algebraic decomposition (SNCAD) algorithm for solving polynomial optimization problems. The main ideas are a bounded CAD construction approach and utilization of sign information. The bounded CAD constructs CAD only in restricted admissible regions to remove redundant projection factors and avoid lifting cells where truth values are constant over the region. By utilization of sign information we can avoid symbolic computation in the lifting phase. Techniques for implementation are also presented. These techniques help reduce the computing time. We have examined our implementation by solving many example problems. Experimental results show that our implementation significantly improves efficiency compared to our previous work.

References

  1. H. Anai and S. Hara. Fixed-structure robust controller synthesis based on sign definite condition by a special quantifier elimination. In Proceedings of American Control Conference, 2000, volume 2, pages 1312--1316, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  2. H. Anai and P. Parrilo. Convex quantifier elimination for semidefinite programming. In Proceedings of the International Workshop on Computer Algebra in Scientific Computing (CASC 2003), pages 3--11, Sept. 2003.Google ScholarGoogle Scholar
  3. H. Anai, H. Yanami, S. Hara, and K. Sakabe. Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a CACSD toolbox. In Proceedings of CCA/ISIC/CACSD 2004 (Taipei, Taiwan), volume 2, pages 1540--1545, 9 2004.Google ScholarGoogle ScholarCross RefCross Ref
  4. H. Anai and K. Yokoyama. Cylindrical algebraic decomposition via numerical computation with validated symbolic reconstruction. In A. Dolzman, A. Seidl, and T. Sturm, editors, Algorithmic Algebra and Logic, pages 25--30, 2005.Google ScholarGoogle Scholar
  5. C. W. Brown. Improved projection for CAD's of R3. In Proceedings of the 2000 international symposium on Symbolic and algebraic computation, ISSAC '00, pages 48--53, New York, NY, USA, 2000. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. W. Brown. Improved projection for cylindrical algebraic decomposition. Journal of Symbolic Computation, 32(5):447--465, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. W. Brown. QEPCAD B: A program for computing with semi-algebraic sets using CADs. SIGSAM BULLETIN, 37:97--108, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In LNCS, volume 32. Springer Verla, 1975.Google ScholarGoogle Scholar
  9. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 12(3):299--328, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. E. Collins, J. R. Johnson, and W. Krandick. Interval arithmetic in cylindrical algebraic decomposition. Journal of Symbolic Computation, 34(2):145--157, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential. Journal of Symbolic Computation, 5(1/2):29--35, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in practice. In Algorithmic Algebra and Number Theory, pages 221--247. Springer, 1998.Google ScholarGoogle Scholar
  14. J. D. Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in algebraic number fields. In Research Contributions from the European Conference on Computer Algebra-Volume 2, EUROCAL '85, pages 289--290, London, UK, 1985. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Duval. Algebraic numbers: An example of dynamic evaluation. Journal of Symbolic Computation, 18(5):429--445, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. S. El Din. Computing the global optimum of a multivariate polynomial over the reals. In Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, ISSAC '08, pages 71--78, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J.-C. Faugère, G. Moroz, F. Rouillier, and M. S. El Din. Classification of the perspective-three-point problem, discriminant variety and real solving polynomial systems of inequalities. In Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, ISSAC '08, pages 79--86, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. L. González-Vega. Applying quantifier elimination to the Birkhoff interpolation problem. Journal of Symbolic Computation, 22:83--103, July 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. González-Vega. A combinatorial algorithm solving some quantifier elimination problems, pages 365--375. Texts and Monographs in Symbolic Computation. Springer, 1998.Google ScholarGoogle Scholar
  20. F. Guo, M. S. El Din, and L. Zhi. Global optimization of polynomials using generalized critical values and sums of squares. In Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC '10, pages 107--114, New York, NY, USA, 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Hong. An improvement of the projection operator in cylindrical algebraic decomposition. In Proceedings of the international symposium on Symbolic and algebraic computation, pages 261--264, New York, NY, USA, 1990. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Hong. Quantifier elimination for formulas constrained by quadratic equations. In Proceedings of the 1993 international symposium on Symbolic and algebraic computation, ISSAC '93, pages 264--274, New York, NY, USA, 1993. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Hong. An efficient method for analyzing the topology of plane real algebraic curves. In Selected papers presented at the international IMACS symposium on Symbolic computation, new trends and developments, pages 571--582, Amsterdam, The Netherlands, The Netherlands, 1996. Elsevier Science Publishers B. V. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. Hyodo, M. Hong, H. Yanami, S. Hara, and H. Anai. Solving and visualizing nonlinear parametric constraints in control based on quantifier elimination: A matlab toolbox for parametric control system design. Appl. Algebra Eng., Commun. Comput., 18:497--512, November 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. Iwane, H. Yanami, H. Anai, and K. Yokoyama. An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In Proceedings of the 2009 International Workshop on Symbolic-Numeric Computation, volume 1, pages 55--64, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. E. Kaltofen, B. Li, Z. Yang, and L. Zhi. Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In Proceedings of the twenty-first international symposium on Symbolic and algebraic computation, ISSAC '08, pages 155--164, New York, NY, USA, 2008. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken. Computing, pages 187--201, 1969.Google ScholarGoogle Scholar
  28. J. Lampinen. Multiobjective Nonlinear Pareto-Optimization. Laboratory of Information Processing, 2000.Google ScholarGoogle Scholar
  29. R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Computer Journal, 36(5):450--462, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  30. S. McCallum. Solving polynomial strict inequalities using cylindrical algebraic decomposition. The Computer Journal, pages 432--438, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  31. S. McCallum. An improved projection operator for cylindrical algebraic decomposition. In B. F. Caviness and J. R. Johnson, editors, Quantifier elimination and cylindrical algebraic decomposition, Texts and Monographs in Symbolic Computation, pages 242--268. Springer, 1998.Google ScholarGoogle Scholar
  32. S. McCallum. On projection in CAD-based quantifier elimination with equational constraint. In Proceedings of the 1999 international symposium on Symbolic and algebraic computation, ISSAC '99, pages 145--149, New York, NY, USA, 1999. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. McCallum. On propagation of equational constraints in CAD-based quantifier elimination. In Proceedings of the 2001 international symposium on Symbolic and algebraic computation, ISSAC '01, pages 223--231, New York, NY, USA, 2001. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. P. A. Parrilo and S. Lall. Semidefinite programming relaxations and algebraic optimization in control, 2006. Mini-course on Polynomial Equations and Inequalities I and II.Google ScholarGoogle Scholar
  35. P. A. Parrilo and B. Sturmfels. Minimizing polynomial functions. In Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, volume 60, pages 83--99. ACM, 2001.Google ScholarGoogle Scholar
  36. S. Ratschan. Approximate quantified constraint solving by cylindrical box decomposition. Reliable Computing, 8(1):21--42, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. Schattman. Portfolio optimization under nonconvex transaction costs with the global optimization toolbox. http://www.maplesoft.com/applications/view.aspx?SID=1401&view=html.Google ScholarGoogle Scholar
  38. M. Schweighofer. Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. on Optimization, 17:920--942, September 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. W. Strzeboński. A real polynomial decision algorithm using arbitrary-precision floating point arithmetic. Reliable Computing, 5(3):337--346, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  40. A. W. Strzeboński. Solving systems of strict polynomial inequalities. Journal of Symbolic Computation, 29:471--480, March 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. A. W. Strzeboński. Cylindrical algebraic decomposition using validated numerics. Journal of Symbolic Computation, 41(9):1021--1038, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  42. T. Sturm and A. Weber. Investigating generic methods to solve hopf bifurcation problems in algebraic biology. In K. Horimoto, G. Regensburger, M. Rosenkranz, and H. Yoshida, editors, Algebraic Biology, volume 5147 of Lecture Notes in Computer Science, chapter 15, pages 200--215. Springer Berlin/Heidelberg, Berlin, Heidelberg, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T. Sturm and V. Weispfenning. Rounding and blending of solids by a real elimination method. In Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling, and Applied Mathematics (IMACS 97), pages 727--732, 1997.Google ScholarGoogle Scholar
  44. V. Weispfenning. The complexity of linear problems in fields. Journal of Symbolic Computation, 5:3--27, February 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. V. Weispfenning. Quantifier elimination for real algebra - the quadratic case and beyond. AAECC, 8:85--101, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  46. V. Weispfenning. Simulation and optimization by quantifier elimination. Journal of Symbolic Computation, 24:189--208, August 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. B. Wilson, D. Cappelleri, T. W. Simpson, and M. Frecker. Efficient Pareto frontier exploration using surrogate approximations. Optimization and Engineering, 2:31--50, 2001.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for optimization problems

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SNC '11: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation
        June 2012
        194 pages
        ISBN:9781450305150
        DOI:10.1145/2331684

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 June 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader