skip to main content
10.1145/2331684.2331713acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Challenge to fast and stable computation of approximate univariate GCD, based on displacement structures

Published:07 June 2012Publication History

ABSTRACT

Given polynomials with floating-point number coefficients, one can now compute the approximate GCD stably, except in ill-conditioned cases where the GCD has small or large leading coefficient/constant term. The cost is O(m2), where m is the maximum of degrees of given polynomials. On the other hand, for polynomial with integer coefficients, one can compute the polynomial GCD faster by using the half-GCD method with the cost less than O(m2). In this paper, we challenge to compute the approximate GCD faster, with the cost less than O(m2). Our idea is to use the displacement technique and the half-GCD method.

References

  1. A. V. Aho, J. E. Hopcroft and J. D. Ullman. The design and analysis of computer algorithms. Addison-Wesley, 1974. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Belhaj. Block factorization of Hankel matrices and Euclidean algorithm. Math. Medel. Nat. Phenom. 5(7), 2010, 48--54.Google ScholarGoogle ScholarCross RefCross Ref
  3. D. Bini and P. Boito. Structured matrix-based methods for polynomial ε-gcd: analysis and comparisons. Proc. of ISSAC'07, ACM Press, 2007, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Beckermann and G. Labahn. A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials. J. Symb. Comput., 26 (1998), 691--714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Chandrasekaran and A. H. Sayed. A fast stable for nonsymmetric Toeplitz and quasi-Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl., 19 (1) (1998), 107--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Corless, P. Gianni, B. Trager and S. Watt. The singular value decomposition for polynomial systems. Proc. of ISSAC'95, ACM Press, 1995, 195--207. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. Corless, S. Watt and L. Zhi. QR factoring to compute the GCD of univariate approximate polynomials. IEEE Trans. Signal Proces., 52(12) (2004), 3394--3402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. M. Diaz-Toca and L. Gonzalez-Vega. Computing greatest common divisors and squarefree decompositions through matrix methods: The parametric and approximate cases, Linear Algebra Appl., 412(2-3), (2006), 222--246.Google ScholarGoogle ScholarCross RefCross Ref
  9. I. Emiris, A. Galligo and H. Lombardi. Certified approximate univariate GCDs. J. Pure and Applied Alge., 117&118 (1997), 229--251.Google ScholarGoogle ScholarCross RefCross Ref
  10. I. Gohberg, T. Kailath and Y. Olshevsky. Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comp., 64(212), 1996, 1557--1576. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Kailath and A. H. Sayed. Displacement structute: theory and applications. SIAM Review, 37 (3), 1995, 297--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. F. Kako and T. Sasaki. Proposal of "effective floating-point number" for approximate algebraic computation. Preprint of Tsukuba Univ., 1997.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. Kaltofen, Z. Yang and L. Zhi. Structured low rank approximation of a Sylvester matrix. International Workshop on SNC'05, D. Wang & L. Zhi (Eds.), 2005, 188--201; full paper appear in Symbolic-Numeric Computation (Trends in Mathematics), D. Wang & L. Zhi (Eds.), Birkhääuser Verlag, 2007, 69--83.Google ScholarGoogle Scholar
  14. Z. Li, Z. Yang, and L. Zhi. Blind image deconvolution via fast approximate GCD Proc. of ISSAC'10, ACM Press, 2010, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Mitrouli and N. Karcanias. Computation of the gcd of polynomials using Gaussian transformation and shifting, Int. Journ. Control, 58 1993, 211--228.Google ScholarGoogle ScholarCross RefCross Ref
  16. R. T. Moenck. Fast computation of GCDs. Proc. 5th ACM Symp. Thory of Comput., 1973, 142--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. K. Nagasaka. Ruppert matrix as subresultant mapping, Proc. of CASC 2007, Springer Berlin. 2007, 316--327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. H. Ohsako, H. Sugiura and T. Torii. A stable extended algorithm for generating polynomial remainder sequence (in Japanese). Trans. of JSIAM (Japan Society for Indus. Appl. Math.) 7 (1997), 227--255.Google ScholarGoogle Scholar
  19. V. Pan. Univariate polynomials: nearly optimal algorithms for factorization and rootfinding. Proc. of ISSAC'01, ACM Press, 2001, 253--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. V. Pan and X. Yang. Acceleration of Euclidean algorithm and extensions. Proc. of ISSAC'02, ACM Press, 2002, 207--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. W. Qiub, Y. Huaa, and K. Abed-Meraima. A subspace method for the computation of the GCD of polynomials. Automatica, 33(4) 1997, 741--743. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Sanuki. Improvement of stabulized polynomial remainder sequence algorithm, submitted, 2009.Google ScholarGoogle Scholar
  23. T. Sasaki. A study of approximate polynomials, I --- representation and arithmetic ---. Japan J. Indust. Appl. Math. 12 (1995), 137--161.Google ScholarGoogle ScholarCross RefCross Ref
  24. T. Sasaki. A practical method for floating-point Gröbner basis computation. Proc. of ASCM 2009, Fukuoka, Japan, Math-for-industry series, 22 2009, 167--176.Google ScholarGoogle Scholar
  25. A. Schönhage. Quasi-GCD. J. Complexity, 1, 1985, 118--147.Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Stewart. Stable pivoting for the fast factorization of Cauchy-like matrix. Preprint, 15 page, 1997.Google ScholarGoogle Scholar
  27. D. R. Sweet and R. P. Brent. Error analysis of a fast partial pivoting method for structured matrices. Adv. Signal Proc. Algorithms, Proc. of SPIE, T. Luk, ed., 2363 (1995), 266--280.Google ScholarGoogle ScholarCross RefCross Ref
  28. T. Sasaki and M-T. Noda. Approximate square-free decomposition and root-finding of ill-conditioned algebraic equations. J. Inform. Proces., 12 (1989), 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T. Sasaki and A. Furukawa. Secondary polynomial remainder sequence and an extension of subresultant theory. J. Inform. Proces., 7 (1984), 175--184.Google ScholarGoogle Scholar
  30. T. Sasaki and F. Kako. Computing floating-point Gröbner bases stably. Proc. of SNC'07, ACM Press, 2007, 180--189, Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Suzuki and T. Sasaki. On Sturm sequence with floating-point number coefficients. RIMS Kokyuroku, 685 (1989), 1--14.Google ScholarGoogle Scholar
  32. M. Sanuki and T. Sasaki. Computing approximate GCD in ill-conditioned cases. Proc. of SNC'07, ACM Press, 2007, 170--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. Sasaki and M. Sasaki. Polynomial remainder sequence and approximate GCD. SIGSAM Buletin 31, 1997, 4--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Terui. An iterative method for calculating approximate GCD of univariate polynomials. Proc. of ISSAC'09, ACM Press, 2009, 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K. Thull and C. K. Yap. A unified approach to HGCD algorithms for polynomials and integers. Manuscript, Available from http://cs.nyu.edu/cs/faculty/yap/papers/.Google ScholarGoogle Scholar
  36. Z. Zeng. The approximate GCD of inexact polynomials part I: a univariate algorithm. Preprint, 2004.Google ScholarGoogle Scholar
  37. L. Zhi. Displacement structure in computing the approximate GCD of univariate polynomials. Proc. of ASCM2003 (Asian Symposium on Computer Mathematics), World Scientific, 2003, 288--298.Google ScholarGoogle ScholarCross RefCross Ref
  38. C. J. Zarowski, X. Ma and F. W. Fairman. QR-factorization method for computing the greatest common divisor of polynomials with inexact coefficients. IEEE Trans. Signal Proces., 48(11) (2000), 3042--3051. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Challenge to fast and stable computation of approximate univariate GCD, based on displacement structures

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SNC '11: Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation
          June 2012
          194 pages
          ISBN:9781450305150
          DOI:10.1145/2331684

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 June 2012

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
        • Article Metrics

          • Downloads (Last 12 months)3
          • Downloads (Last 6 weeks)1

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader