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ABSTRACT

We propose a mathematical framework for query selection
as a mechanism for reducing the cost of constructing infor-
mation retrieval test collections. In particular, our mathe-
matical formulation explicitly models the uncertainty in the
retrieval effectiveness metrics that is introduced by the ab-
sence of relevance judgments. Since the optimization prob-
lem is computationally intractable, we devise an adaptive
query selection algorithm, referred to as Adaptive, that pro-
vides an approximate solution. Adaptive selects queries iter-
atively and assumes that no relevance judgments are avail-
able for the query under consideration. Once a query is
selected, the associated relevance assessments are acquired
and then used to aid the selection of subsequent queries.
We demonstrate the effectiveness of the algorithm on two
TREC test collections as well as a test collection of an online
search engine with 1000 queries. Our experimental results
show that the queries chosen by Adaptive produce reliable
performance ranking of systems. The ranking is better cor-
related with the actual systems ranking than the rankings
produced by queries that were selected using the considered
baseline methods.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.4[Systems
and Software: Performance Evaluation]

General Terms

Measurements, Algorithms, Theory and Performance
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Information Retrieval, Test Collection, Query Selection

1. INTRODUCTION

Modern test collections are large, comprising millions of
documents and thousands of queries that require relevance
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judgments in order to calculate metrics of retrieval effective-
ness. Constructing a test collection incurs a cost which, in
the simplest case, is proportional to the number of queries
chosen to evaluate the retrieval systems and the number of
documents that need to be judged per query. Hence, the
cost can be reduced by: (i) query selection that limits the
number of queries for which relevance judgments need to
be collected, (44) document selection that reduces the num-
ber of documents to be judged for each query, and (%) a
combination of the two.

Much recent work has been devoted to effective and effi-
cient construction of test collections [1, 5], with the primary
focus on document selection [4]. In this paper, we explore
methods for query selection as a means of dealing with a
budget constraint. As Guiver et al. [10] showed, it is pos-
sible to reproduce the results of an exhaustive evaluation of
systems by using a much reduced set of queries. However,
it is still unclear how to select such a subset when relevance
judgments are not available for the queries under consider-
ation.

In our approach, we first formulate query selection as an
optimization problem, minimizing the error in systems eval-
uation based on a subset of queries. In contrast to the pre-
vious work which is mostly retrospective and assumes that
some relevance judgments are available for each query [10,
15, 17], our model is designed to work in practice and does
not require relevance judgments for a query that is not yet
selected. The mathematical formulation shows that an op-
timal subset of queries satisfies the following properties: (1)
selected queries have a low correlation with one another,
thereby maximizing the information we gain from each, (1)
selected queries have strong correlation with the remaining
queries, as without this correlation there is no predictive ca-
pability, and (4iz) the total uncertainty associated with the
selected queries is small. Here the correlation between two
queries refers to their similarity in evaluating systems.

Since selecting the optimal subset of queries is a compu-
tationally intractable problem, we approximate the solution
by an iterative query selection process referred to as Adap-
tive. The Adaptive algorithm starts by selecting the first
query at random, assuming no information about relevance
judgments. However, once this query is selected, the rele-
vance judgments are acquired and used to assist with the
selection of subsequent queries.

Specifically, at each iteration we use previously selected
queries and associated relevance judgments to train a clas-
sifier that estimates the relevance of documents pooled for
each of the unselected queries. Using the output of the clas-



sifier we compute the probability of relevance for the pooled
documents and used it to estimate the performance metric,
e.g. the average precision, and the corresponding approxi-
mation variance which we refer to as uncertainty.

We evaluate our method by comparing the ranking of
systems based on the subset of queries with the ranking
over the full set of queries. We report the results in terms
of Kendall-t and Pearson correlation coefficients and show
that the query subsets chosen by our models are significantly
more effective than those selected by the considered baseline
methods.

It is known that using query subsets may lead to poor
performance when estimating the performance of previously
unseen (new) systems [17]. We conduct experiments to in-
vestigate how our method generalizes to new systems. We
show that the iterative algorithm can be modified to im-
prove generalizability. Additionally, we consider the query
selection problem for multiple metrics. In our experiment
we show that a query subset selected based on a particular
metric may not provide reliable systems evaluation when an-
other metric is used to measure retrieval performance. Thus,
we modify our query selection algorithm to select a query
subset that leads to reliable evaluations across multiple met-
rics.

In summary, the contributions of this paper are three-
fold: () we provide a theoretical model for query selection
that explicitly models uncertainty in retrieval effectiveness
scores, (ii) we develop Adaptive, an iterative algorithm, that
efficiently implements our theoretical model in practice, and
(#it) we modify the iterative algorithm to investigate how the
selected query subset generalizes to (a) new unseen systems
and (b) changes to the evaluation metric.

2. RELATED WORK

The increased size of document corpora and query sets
has made the cost of relevance assessments one of the main
challenges in creating IR test collections. Spark-Jones and
Van Rijsbergen [19] proposed a document pooling technique
to select a subset of documents to be judged and the Na-
tional Institute of Standard and Technology (NIST) adopted
this method in most TREC experiments. For example, in
the TREC AdHoc task, each participating system adds the
top-100 ranked documents per query to the common pool to
be judged by human assessors. Documents that are not in-
cluded in this pool are assumed to be non-relevant. Several
alternative approaches to the original pooling method have
been suggested in order to judge more relevant documents
at the same pool depth, e.g. Zobel [21] and Cormack et al.
[7].

On average, NIST assessors judge 2,000 documents per
query. This is often sufficient for a reliable evaluation of
systems, even for recall-sensitive metrics such as average
precision (AP), and increases the reusability of the TREC
test collection for other tasks and new systems. Neverthe-
less, it still demands a considerable human effort and incurs
a significant cost when the test collection contains a large
number of queries. As a result, most of the existing TREC
test collections contain as few as 50 queries.

Using small samples of queries to measure retrieval per-
formance may cause considerable errors in the systems eval-
uation. Therefore, recent studies have concentrated on the
IR evaluation with large set of queries [5]. In order to make
relevance assessments feasible, various document selection

methods are suggested [2, 4]. These methods reduce the
number of documents that need to be judged per query and
are often used in conjunction with evaluation metrics [2, 4,
20] designed for shallow sets of relevance judgments.

Following the trend of online search engines with large
number of queries, NIST has recently launched the Million
Query track [1]. In 2007, the Million Query track used 1800
queries for evaluation. The track mostly focused on (%) ana-
lyzing the efficiency of document selection methods, and ()
the impact that incomplete relevance judgments have on the
measurement accuracy.

Query selection is a complementary approach to document
selection and is used to reduce the cost of creating test collec-
tions. Guiver et al. [10] have shown that query subsets vary
in their accuracy of predicting the average performance of
systems. Their results indicate that some subsets of queries,
known as representative subsets, are particularly good pre-
dictors of the systems average performance as measured over
the full set of queries. Mizzaro and Robertson [15] explored
the characteristics of individual queries that were beneficial
for systems evaluation. They defined the notion of hubness
for queries where a higher hubness score indicates that a
query is better than others at distinguishing the systems re-
trieval effectiveness. Robertson [17] later showed that the
query selection based on the hubness scores alone does not
necessarily result in a reliable prediction of the systems rank-
ings. The work by Guiver et al. [10] shows that, indeed,
representative query sets that are effective in approximating
the systems ranking, comprise of queries that range in their
individual ability to predict the systems performance.

Most studies on query selection are based on retrospective
analysis [10, 15, 17] and assume that relevance judgments are
available at the time the subset of queries is selected. Typ-
ical scenarios involve selecting queries to increase the pool
of existing relevance judgments to accommodate evaluation
of new systems. For example, Hosseini et al. [14] proposed
a query selection approach to enhance the reusability of a
test collection. Their focus was on generalizability, i.e. a
reliable ranking of systems that did not contribute to the
judged pool of documents. They assumed that an initial set
of relevance judgments is available for each candidate query,
and proposed a budget constrained model to select an opti-
mal subset of queries. The selected queries were then used
to expand relevance judgments based on the documents re-
trieved by new systems. The authors later extended their
work [13] by considering a query-document pair selection
problem when relevance judgments were to be created iter-
atively. Yet again, they assumed that the available budget
allows for gathering at least a few relevance judgments per
each query in the test collection. The authors applied convex
optimization with a budget constraint to collect relevance
judgments optimally across queries.

3. QUERY SELECTION

Previous research provided valuable insights on framing
theoretical models for query selection [13, 14]. It focused
on cases where there were judged documents for each query
in the pool. The objective was to select a subset of queries
to obtain additional relevance judgments for a more robust
evaluation. In contrast, we focus on a scenario when no rel-
evance judgments are available until a query is selected. We
assume that a large set of queries has been initially compiled
to measure the performance of a set of systems. Our goal
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Figure 1: (a) The true performance matrix X for systems in S and queries in Q. Each entry indicates the system performance

score based on the available relevance judgments. (b) The approximated performance matrix X, for systems in S and queries
in Q. Each pair indicates the estimated performance and associated uncertainty.

is to find a subset of queries that most closely approximates
the system evaluation results that would be obtained if we
judged documents for the full set of queries.

To that effect we first formulate the query selection prob-
lem as in [13], assuming that relevance judgements are avail-
able and, thus the performance scores are known. We then
relax this assumption and introduce our query selection model
in the next section.

Consider a set of n known queries, @, together with a
set of [ known systems, S. When relevance judgments are
available, we can represent the associated retrieval effective-
ness scores of the [ systems against the n queries using a
I x n performance matrix X € R™*™ (Figure 1a). In X, the
rows represent systems, the columns represent queries, and
the value x4 shows the performance score, e.g. the aver-
age precision, of s system in S against ¢'* query in Q.
We also consider a column vector M € R'*!, as the aver-
age performance vector. The elements of M represent the
average performance scores of individual systems across the
set of queries. Thus, when the metric is AP, M represents
the mean average precision (M AP) scores for individual sys-
tems.

Now, let ® = {j1, ..., jm} be a subset of {1,2,...,n} with
1 < m < n and Qs be the corresponding query subset.
We define Mg € R™*! as the column vector comprising the
average performance of systems for the subset of queries,
Qa. The aim of a query selection method is to find a subset
of m queries such that the corresponding column vector Mg
closely approximates the M vector.

The approximation is quantified using the mean squared
errors between elements of M and Mg, if the similarity in
terms of the absolute values of performance scores is of inter-
est. Alternatively, we can use Kendall-7 correlation, if the
similarity in the ranking of systems is of interest, or Pearson
linear correlation, if the similarities in the relative perfor-
mance scores are of interest. As in [13], we choose Pearson
correlation as it is amenable to mathematical optimization.
However, we use Kendall-7 as our final evaluation measure
for comparing the rankings of systems produced by full set
and a subset of queries.

The Pearson correlation between the elements of M and
Mq> is

_ cov(M, Ms)
* {Uar(M)var(Mq,)}%

(1)

where
var(M) = n~2eT e
var(Me) =  m~2d"%d
cov(M,Ms) = n~'m~'d"Se

where e = {1}"Xl is the vector of n components, each equal
to 1; d € {0,1}™** is a binary vector such that d; = 1if j €
®, and d; = 0 otherwise. Note that this is slightly different
from the formulation in [13] as the task is also different. In
[13], d is defined as a vector of real values and its role is
to establish the proportions of the budget allocated across
queries. In this paper, since we are interested in the query
selection problem, the vector d is defined, without loss of
generality, as a binary vector and considered as an indicator
to selected queries.

Following Equation 1, we have ¥ = cov(X) as the n x n
covariance matrix of the system-query performance scores
such that (i,)"" element of ¥ is the covariance between "
and 7" columns of X. In practice, the covariance matrix ¥
calculated based on the [ systems is:

l

S=0-1)"" Z(ocZ —a) (z —a)

i=1

where a = 1" Zi:l x; and x; is the i*" row of X. The op-
timum subset maximizes the Pearson correlation ps, where

substituting for the variances and the covariance we have
(d¥xe)
{(eTSe)(dTxd)} %

This derivation assumes that the elements of the X matrix
are true representatives of the systems performance as com-
puted over the full set of relevance judgments. Of course,
in practice this assumption does not hold because of the
absence of relevance judgments during query selection. In
the following section, we propose an extended model that
uses performance predictors for approximating systems true
performance. We then extend the model to incorporate ex-
plicitly the noise in the measurement of the systems perfor-
mance.

pe =

4. UNCERTAINTY-AWARE SELECTION

We assume that instead of containing the true perfor-
mance values, each element of X holds a predicted perfor-
mance estimate with a variance from the true value that
we refer to as uncertainty. Hence, the noisy X matrix can
be represented as shown in Figure 1b where each of its ele-



ments represents a pair of values: &5 4 and vs,q = var(zs,q).
In addition, let Me € R™™! be the vector of | average per-
formance scores computed based on the query subset, Qa,
and the performance matrix X. Thus, in practice we look
for a subset that maximizes the Pearson correlation between
Mg and M. To compute the Pearson correlation we need to
compute the variancgs and the covariance of Mq> and M.

The variance of Mg is due to two sources, the variance
across systems and the variance due to the measurement
noise. The first variance is expressed by var(Mas) as calcu-
lated in Section 3. To compute the second variance we first
note that each of the elements in M@ has its own variance.
If 4% denotes the performance of i*" system in Mg, then the
associated variance is

var(iip) =m™> Y v

JjEP
Following the law of total variance [3], the variance of Ma
is given by

var(Ms) = var(Mas) + Es(var(iy)) = (2)
m 2 Sd+m Y E(v) =m 2dT (S +U)d

where 1 < s <l and U = diag(E(v1), ..., E(vn)) is a diago-
nal matrix, referred to as the uncertainty matrix. E(vq) =
-t 25:1 vi,q is the mean uncertainty for a query q.

To compute the covariance between Mg and M , let us con-
sider an unknown system that is randomly sampled from the
I systems, and let z and & denote the associated performance
row vectors in X and X. The system’s average performance
computed based on X and the full set of queries is

-1
nw=n "xe
Also the systems average performance based on the subset
of m queries, Q, and X is
pe =m”'id
where e and d are the column vectors as defined in Section
3. The covariance between Mg and M is then

cov(Mg, M) = cov(fiz, ) = m ™ n " cov(id, ze) =
m 'n 'd cov(@T, z)e =m 'n d Se  (3)
where #d = d¥#7, and
cov(@”,z) = cov(z” + ¢, 1) =
E{(z - E(m))T(m —E())} =cov(X)=X
Note that, 27 = 27 + € where € € R**™ is the vector of
estimator’s noise.

Thus, the Pearson correlation between Mg and M is given
by

5o — (d" Se) l )
{(eTXe) (dT (24 U)d)}2

Formally, we seek a subset Q¢ that maximizes ps. Reorder-
ing the correlation above we have

(eTXd)
(A7 (3 + U)d)?

Selecting a subset of queries ® that maximizes ps is equiva-

1
ve = (" %e)2 pp =

lent to selecting a subset of queries that maximizes vo since
(eTEe)% is a constant. Let oy be the (4,5)" element of
¥ and E(v;) be the j** diagonal element of the uncertainty
matrix U. We can then rewrite yo as
Di<i<njes(Ti;)
max yo = Lsicngjee (5)

@ (S sea(000) + X ea @)}

Equation 5 provides valuable insights into the query selec-
tion problem. In order to maximize v we seek a set of
queries that minimizes the denominator and maximizes the
numerator.

To minimize the denominator, we need to choose m queries
for which the corresponding columns in X are least corre-
lated with one another. This is equivalent to maximizing the
information we derive from each query in the subset. Con-
versely, if the columns of X are perfectly correlated, then
all the queries provide the same information and we may as
well have a subset of size one. Additionally, the sum of the
expected uncertainty, {E(v;)|j € ®}, of the selected queries
should be a minimum.

The numerator is maximized if the columns in X, asso-
ciated with the selected queries, have high correlation with
the rest of columns in X. This is also intuitively clear. Af-
ter all, if the selected subset is completely uncorrelated with
the remaining queries, then it has no prediction power of
the systems performance on the remaining queries. Thus,
we seek a subset of queries that are highly correlated with
the rest of queries.

S. ADAPTIVE QUERY SELECTION

Thus far, we introduced a theoretical model for query se-
lection that extends the previous work by explicitly model-
ing uncertainty. The model allows for the elements of the
performance matrix to represent predicted rather than ac-
tual performance values. Equation 5 shows how the pre-
dicted performance values can be incorporated into the op-
timization process, but does not indicate how they can be
computed in practice. We describe in detail the Adaptive
query selection algorithm that iteratively selects queries and
refines the estimations in X. This method exploits the su-
pervised prediction and uses the relevance judgments of al-
ready selected queries, to train a model for selecting subse-
quent queries.

The Adaptive method iteratively selects a new query, that
in combination with the previously selected queries max-
imizes Equation 5. The relevance judgments of the pre-
viously selected queries are used to predict the relevance
judgments of yet non-selected queries. The adaptive method
subsequently estimates the performance scores, and updates
the X matrix by adding the systems performance scores for
the selected query, and those predicted for the non-selected
queries. This process is repeated until we reach the maxi-
mum number of queries to be selected.

In order to predict the relevance of documents for queries
that have not been selected yet, we train a classifier using
judged documents of previously selected queries as training
data. Each query-document pair is represented to the clas-
sifier as a vector of 7+[ generic features where [ refers to the
number of systems. These features are:

e The number of systems that retrieved the query-document

pair (one feature).



e The average, minimum and maximum ranks given to
the query-document pair by the systems (three fea-
tures).

e For systems that retrieve the query-document pair, we
calculate their corresponding past-performance scores
based on the subset of queries for which we have rel-
evance judgments. For example, if the metric is AP,
we compute a system’s M AP based on its AP scores
obtained for previously selected queries. We then de-
termine the minimum, maximum and average across
systems (three features).

e The [ relevance scores provided by [ systems for the
given query-document pair (I features). If a system
does not retrieve the document, the corresponding score
is set to the minimum score obtained for the documents
retrieved by that system.

We train a linear support vector machine (SVM) as our clas-
sifier [8]. For each query-document pair we map the output
of the classifier to a probability score using the calibration
method proposed in [16]. Briefly, let f € [a, b] be the output
of the SVM classifier. We use a sigmoid function to map f
to a posterior probability on [0,1]:

1
1+ exp(Afi + B)

where 7; refers to the true relevance value of document i, p; is
its probability of relevance, and A and B are the parameters
of the sigmoid function, fitted using maximum likelihood
estimation from a calibration set (7;, f;). The training data
is the same as the training data used by the classifier. Thus,
at each iteration we retrain the classifier and fit the sigmoid
function to exploit the increase in training data from the
new round of relevance judgments.

After each query-document pair is assigned a probability
of relevance, we use these probabilities in the family of MTC
estimators, proposed by Carterette et al. [4], to provide
new estimates for the unknown performance scores in the X
matrix. For example, when the metric of interest is PQk,
the expectation and variance are calculated as:

E[POk] = F i pi
var[PQk] = k% S pi(1—pi)

where p; is the calibrated relevance probability of the docu-
ment retrieved at rank 7. The formulations for other metrics,
e.g. AP, can be found in [4].

pi = P(r; =1|f;) =

6. EVALUATION SETTINGS

Query selection and document selection methods are often
evaluated by considering the systems ranking they produce
compared to the ground-truth systems ranking based on all
the queries and the full set of relevance judgments. As in
previous work [4, 10], we use Kendall-T and Pearson coef-
ficient as the correlation metrics. Kendall-7 penalizes dis-
ordering of high-performance and low-performance system
pairs equally. However, in practice, distinguishing between
best performing systems is often more important. Therefore,
in many of our experiments, we also report separately the
results for the subsets of best performing systems in terms
of the average precision (AP) and the precision at position
100 (P@100).

We run our experiments on both the TREC 2004 Robust
track, and the TREC-8 AdHoc track data sets. The TREC
2004 Robust track includes a collection of 249 queries, 14
participants with a total of 110 automatic runs, and 311,410
relevance judgments. The TREC-8 consists of 50 queries, 39
participants with 13 manual runs and 116 automatic runs,
and 86,830 relevance judgments. In our experiments, we
consider individual runs as different search systems, taking
special care when considering runs from the same partici-
pant. We also create a Web test collection based on the
query logs of a commercial search engine. This dataset
comprises 1,000 queries, 50 runs of a learning to rank sys-
tem trained with different feature sets, and 30,000 relevance
judgments. We compare the performance of our query selec-
tion against query sets obtained by three baseline methods:
random, oracle and iterative query prioritization.

Random: randomly selects a subset of queries. We report
the results averaged over 1,000 random trials and consider
95% confidence interval of the sample average.

Oracle(Ideal): selects the best subset of queries by con-
sidering the full X matrix constructed from the full set of
queries and all the relevance judgments in the test collec-
tion. For a given subset size m < 10 and m > (n — 10), we
perform an exhaustive search to find the best subset. Ex-
haustive search is computationally expensive for 10 < m <
(n — 10). Therefore, we estimate the best subset of size
10 < m < (n — 10) by randomly generating 10,000 query
subsets from which the best subset is selected.

Iterative Query Prioritization (IQP): we consider a

modified version of the budget constrained optimization method

proposed in [13] as a query selection baseline. The original
method, referred to as query prioritization (QP), cannot be
used in our experiments because it is defined as a convex
optimization that demands a set of initial judgments for all
the queries. This assumption is not valid in our experi-
ments. Thus, we consider a modified version of this method
that does not rely upon such an assumption and is special-
ized for the query selection task. We replace the budget
vector B € [0,1]"*! with a binary vector d € {0,1}"*" as
an indicator to selected queries. Therefore, the optimization
function is changed to
T
mas f(d) = 2=

subject to >
a (dTxd)> ’

j=1 d] S m

This modified version, (IQP), starts from zero relevance
judgments and iteratively selects queries and updates the
vector d. Similar to the original method in [13] IQP does
not consider the uncertainty in estimating the entries of the
X matrix. That is, it uses the same classifier (as in our it-
erative adaptive method) but directly maps the output of
the classifier to 0 or 1, when the relevance judgments are bi-
nary, and regards them as the predicted absolute relevance
values. Therefore there is no calibration of relevance prob-
abilities involved. As such, it does not use the MTC esti-
mators discussed in Section 5 but, instead, relies upon the
standard metrics, e.g. AP, to measure the systems perfor-
mance. Considering IQP in our experiments helps us inves-
tigate the effect of incorporating measurement uncertainty
into the query selection.

1We considered the oracle subset in our experiments to pro-
vide an upper bound for the performance of the query selec-
tion algorithms.
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Figure 2: Selecting queries using (i) Oracle, (i) random, (153) IQP, (iv) Adaptive query selection algorithm, for the Robust
2004 test collections with 249 queries. The first query is randomly selected. The results are averaged over 50 trials with AP

metric.

7. EXPERIMENTAL RESULTS

In the experiments with TREC test collections, we con-
sider all the official retrieval runs. Each system contributes
100 documents to the pool for each query. After selecting
a query, the official TREC judgments are collected and re-
vealed. The Adaptive and IQP methods, then add these
recently judged documents to their training sets.

On each testbed, we report the results for three different
groupings of systems: (7) all systems, (72) 30 best performing
systems, and (i7) only pairs of systems with a statistically
significant performance difference, measured by the paired
t-test with the significance level of 0.05.

Figure 2 shows the results on the Robust 2004 test collec-
tion with 249 queries. The retrieval evaluation metric is AP.
Pearson and Kendall-7 correlation are used to measure the
correlation of a query subset vector Ms, and correspond-
ing vector M, calculated using the full set of 249 queries.
At the initialization step of the Adaptive and IQP meth-
ods, the first query is randomly selected. To deal with the
variation of random sampling, we consider 50 trials. We
report the average of 50 trials as the average results for
Adaptive and TQP. We also consider the 95% confidence
interval of the average performance to detect significant dif-
ferences between the query selection methods. For instance,
in Figure 2a when the subset covers 28% of the full query
set, the average of 50 Pearson correlation scores obtained
by the Adaptive method is 0.94 and the associated stan-
dard deviation is 0.07. Thus the 95% confidence interval

is: [0.94 +1.96 x %}. The confidence intervals are shown

as error bars. In general, the difference between two meth-
ods is statistically significant for a particular subset size, if
the associated error bars do not overlap. As seen, in Figure
2a and 2b, for both Pearson correlation and Kendall-7, the
Adaptive method significantly outperforms the Random and
IQP baselines across different subset sizes. From Figure 2b
we see that the Adaptive method achieves a Kendall-7 cor-
relation of 0.9 with a subset that covers 50% of the queries
(125 out of 249 queries). However, the Random and IQP
methods require at least 70% of queries to achieve the same
Kendall-7.

Table 1 summarizes the Kendall-7 and Pearson correlation
for the four query selection methods when selecting {20, 40,

60}% of queries in the Robust 2004 and the TREC-8 test
collections.

The columns labeled ‘all’ indicates the results for all the
systems in a test collection. For both test collections and
the three subset sizes, {20, 40, 60}%, the Adaptive method
significantly outperforms /QP and Random in most cases.
For instance, in the Robust 2004 test collection the Adap-
tive method obtains {15, 10, 5}% average improvements
over Random and IPQ in Kendall-7 for subsets of {20, 40,
60}% respectively. Similar improvements are observed for
the TREC-8 test collection.

The columns labeled ‘top’ indicates the results for the 30
best performing systems, i.e. those with the highest MAP
scores. When calculating Pearson and Kendall-7 correla-
tions, the vectors Mg and M are constructed by considering
only the top 30 systems. The remaining systems only con-
tribute to the query selection process and are not used for
evaluation. Once again, the Adaptive method significantly
outperforms the I/QP and Random methods in most of the
cases. Interestingly, the improvements are even larger than
the improvements of the full set of systems. For instance, for
the Robust test collection, improvement in Kendall-7 is on
average 10% for the full set of systems and it rises to 25% for
the top 30 best performing systems. Similarly, the average
improvement in Pearson correlation rises from 7% to 14% on
average. Similar results are observed for the TREC-8 test
collection.

The columns labeled ‘sig’ indicates the results for the pairs
of systems whose performances difference is statistically sig-
nificant. If a difference in average performance scores of two
systems is not statistically significant, it is reasonable that
they may be ordered differently when evaluated over a sub-
set of queries. Such tied systems increase the probability of
a swap and thus may considerably decrease Kendall-7 since
the common formulation of Kendall-7 does not distinguish
between pairs of systems with and without significant dif-
ferences. This is, in fact, the case for the Robust and the
TREC-8 test collection where about 30% of pairs of systems
are tied as measured by the paired t-test with the signifi-
cance level of 0.05. Thus, we also compute the Kendall-7 of
systems with a significant difference in M AP. Again, the



Table 1: Comparisons of the four query selection methods for the two TREC test collections based on the AP metric. The

statistically significant

improvements of Adaptive over IQP and Random are marked by f.

Robust2004 TREC-8
Subset | Method Kendall-7 Pearson Kendall-T Pearson

all top sig all top all top sig all top

Random 0.68 0.45 0.75 0.83 0.68 0.72 0.45 0.88 0.92 0.77

20% IQP 0.67 0.47 0.78 0.86 0.70 0.74 0.53 0.92 0.93 0.81

Adaptive | 0.777 [ 0.637 [ 0.857 [ 0.927 [ 0.797 [ 0.837 | 0.697 | 0.957 | 0.957 [ 0.927

Oracle 0.90 0.81 0.90 0.97 0.95 0.88 0.80 0.97 0.97 0.95

Random 0.80 0.58 0.82 0.93 0.76 0.77 0.58 0.95 0.95 0.86

40% IQP 0.80 0.56 0.85 0.94 0.78 0.81 0.66 0.96 0.95 0.89

Adaptive | 0.877 [ 0.697 [ 0.897 [ 0.987 [ 0.897 [ 0.907 | 0.817 | 0.997 | 0.97T [ 0.957

Oracle 0.92 0.86 0.95 0.99 0.96 0.93 0.85 1.0 0.98 0.97

Random 0.85 0.71 0.88 0.97 0.90 0.87 0.70 0.97 0.97 0.90

60% IQP 0.88 0.73 0.90 0.96 0.91 0.88 0.80 0.99 0.98 0.92

Adaptive | 0.917 | 0.837 [ 0.957 [ 0.997 | 0.967 | 0.937 | 0.85T 1.0 0.98 0.967

Oracle 0.94 0.92 0.97 0.99 0.99 0.95 0.91 1.0 0.99 0.99
Table 2: Comparisons of Random and Adaptive using the ,
Web test collection. ,
desired Kendall-7 c 08
Method =5=—=—05T 0.9 £ 07
#querics Random | 167 | 368 | 739 £0s
Adaptive | 71 207 486 07 os
#relevance judgments Random | 5010 | 10235 | 28804 E o

Adaptive | 2086 | 5803 [ 15854 S .- Oracle

x 0.3 — Random 4
_ .. Query Selection Trials
0.2 4

Adaptive method significantly outperforms IQP and Ran-
dom in most cases.

We repeated the experiments in Table 1 for P@100 metric,
and observed similar results for both the test collections.?

7.1 Results of the Web Data

We also investigate the performance of Adaptive on a test
collection comprising the Web search results from a com-
mercial search engine with 1,000 queries and 50 different
search systems. Here, the systems are various rankers (runs)
of a learning to rank system that were trained with differ-
ent feature sets. To generate a ranker we randomly sample
g = {5, 10, 20, 30 or 40} features from a given feature set and
optimize the ranker on a common training set (the training
details are out of the scope of this paper). For each query,
the top 5 web pages returned by the rankers are pooled for
relevance assessment. The performance of each ranker is
measured according to the precision at the position rank 5
(PQ5).

Table 2 reports the number of queries, and the number
of relevance judgments required to reach Kendall-7 values
of {0.7, 0.8, and 0.9} by the Adaptive, and the Random
query selection method. We focus on the comparisons be-
tween Adaptive and Random because the random sampling
is commonly used for selecting candidate queries. Thus, we
can observe the cost reduction that can be achieved in prac-
tice by the Adaptive method.

The reported results for the Adaptive method are the av-
erage over 10 trials. In each trial, the initialization involves
20 queries instead of a randomly selected single query. This
ensures a sufficiently large training set for the initial classi-
fier without losing much in the query selection performance.

2The results on P@Q100 are not reported due to lack of space.

o
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20 25
Subset Size
Figure 3: Sensitivity of the query selection to the first query
using TREC-8 comprising 50 queries. The subset size varies
between 1 and 45.

As seen in Table 2, the required subset sizes for 7={0.7,
0.8, 0.9} are statistically significantly smaller than those
required for random sampling. For instance, the random
method obtains 7 = 0.9 for a subset of size 739 whereas the
Adaptive method only requires 486 queries to reach the same
7. This is equivalent to judging 12,950 fewer documents
than the Random method. Similar results are observed for
7={0.7 and 0.8}.

7.2 Effects of Initialization

The initialization step of the Adaptive method involves
randomly selecting the first query. We now consider the
sensitivity of the Adaptive method to the selection of the
first query. The choice of the first query could possibly af-
fect the quality of both (i) the queries selected in the sub-
sequent stages and (iz) the training data for the classifier.
Our analysis focuses on (i) since the impact on the train-
ing data cannot be separated from the characteristics of the
classification method and thus is out of the scope of this
paper.

In order to isolate the effects of the initial query on the
subsequent queries, we assume that the true X matrix is
available, i.e. that the estimator has access to all relevance
judgments. Using the TREC-8 data set, we randomly select
the first query. Subsequent queries are iteratively selected
based on the query selection model in Equation 5 but using
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Figure 4: The generalizability test for the query subsets
selected by Adaptive and Adaptive’, the modified query
selection method.

the true X matrix where the corresponding uncertainty U
matrix is zero. Results are shown in Figure 3 for 50 trials.
Each trail contains a distinct query for the initialization. As
seen, the Kendall-7 scores obtained in all the trials converge
to the Kendall-7 for the ideal query set more quickly than
the Kendall-7 obtained for Random. The kendall-7 variation
across trials decreases as more queries are selected. For the
query subsets of size greater than 10 queries the performance
is similar across all the trials. This suggests that the query
selection model is robust to the selection of the first query.

8. GENERALIZATION

We now consider the generalization of the Adaptive query
selection method. In Section 8.1 we discuss the effectiveness
of the resulting query set in evaluating new systems that did
not contribute to the query selection process. In Section 8.2
we consider the reliability of the query subset for evaluating
systems performance using multiple metrics. This is partic-
ularly important when systems are compared using various
performance metrics.

8.1 Evaluation of New Systems

Previous work [14, 17] has shown that queries selected
based on the performance of a particular set of systems may
not be effective in evaluating new, previously unseen sys-
tems. We observed a similar tendency by the Adaptive query
selection. Thus, to avoid over-fitting to the systems used to
select the queries we modify the Adaptive algorithm.

The modified algorithm is referred to as ‘Adaptive™ and
comprises the following changes. When selecting a query we
consider ¢(c > 1) random subsets of the [ systems of size
h(h < 1). We allow overlaps between the subsets and ensure
that each system appears in at least one of the subsets. For
each subset of systems we choose a query that, in combina-
tion with already selected queries in ®, maximizes vo (see
Equation 5). Finally, we pick the query that is selected by
most of the systems subsets, and consider it for relevance
assessments.

We test the generalization of the Adaptive™ approach us-
ing the two TREC test collections. We first randomly select
50% of systems and treat them as new systems. When se-
lecting new systems, we hold out not only individual runs
but the entire set of runs from the same participant. The
remaining systems are considered as participating systems

Table 3: Comparing the generalization of a selected subset
using two metrics: P@Q100 and AP.

kendall-7

Subset Method Robust 2004 TREC-8
P@100 | AP | P@100| AP
Random 0.77 0.80 0.75 0.78
20% Adaptive 0.76 0.82 0.76 0.80
AdaptiveT 0.84T 0.87T 0.81T 0.857
Oracle 0.91 0.95 0.86 0.89
Random 0.82 0.87 0.84 0.85
40% Adaptive 0.80 0.85 0.84 0.86
Adaptive™ | 0.897 [0.92T [ 0.907 [ 0.90T
Oracle 0.93 0.97 0.94 0.93
Random 0.89 0.91 0.89 0.90
60% Adaptive 0.84 0.88 0.87 0.91
AdaptiveT | 0.937 [ 0.967 | 0.957 | 0.95T
Oracle 0.96 0.98 0.97 0.97

and used to select queries. When computing the perfor-
mance metrics for the participating systems, we also remove
documents that are uniquely retrieved by the new (held-out)
systems.

The results of the generalization test for the Robust 2004
test collection and Kendall-7 are shown in Figure 4. We cre-
ated ¢ = 100 random system subsets, each of size h = 0.2 x 1,
where [ refers to the number of participating systems. Fig-
ure 4 clearly shows that the Adaptive algorithm overfits the
set of queries to the participating systems and performs no
better than Random when evaluating new systems. In con-
trast, Adaptive® significantly outperforms Random across
different sizes of the query subsets.

The detailed results of the generalization experiments are
shown in Table 3 for both Robust and TREC-8 test col-
lections, and two metrics, AP and P@100. In all cases the
Kendall-T obtained by Adaptive™ is significantly larger than
the Kendall- of the Adaptive and Random algorithm.?

8.2 Use of Alternative Performance Metrics

One of the goals of IR test collections is to enable eval-
uation of systems in terms of various metrics. Ideally, the
subset of queries used for systems evaluation should provide
reliable estimates of the systems performance regardless of
the metrics used. In the following experiments we show that
for some methods that may not be the case. Namely, when
the metrics used to select queries differs from the metrics
used to evaluate systems, the query subset may not provide
reliable estimates of the systems performance.

For that reason, we modified the Adaptive algorithm to
generalize across multiple metrics. The modified version is
referred to as ‘Adaptive*’. At each step of the query se-
lection process, for each metrics, and for each non-selected
query the Adaptive* computes the associated v¢ scores. It
averages the scores across different metrics and then selects
the candidate query with the maximum average of yo scores.

We consider four IR metrics: P@Q10, PQ100, Recall and
AP and measure the associated Kendall-T scores (71) for
query subsets of various sizes selected. Let T» be the set
of Kendall-7 scores for various subset sizes calculated when
the evaluation metric is different from the metric used for
query selection — the selection metric. Ideally the Kendall-7

3Similar results were also observed for Pearson correlation
but not reported due to lack of space.



Table 4: The average Kendall- loss (mean(T%) - mean(T1))
for four metrics using the TREC 2004 Robust track. Given
a metric «, 71 denotes the set of Kendall-T scores for var-
ious query subset sizes when the metric « is used for both
query selection and system evaluation. 75 denotes the set
of Kendall-7 scores when the metric « is used to measure
systems performance for a subset of queries selected using
another metric.

. . Evaluation Metric
Selection Metric 5676 Tp@100 | Recall | AP
PQ@10 0.0 -0.082 | -0.065 | -0.068
P@100 -0.084 0.0 -0.042 | -0.051
Recall -0.076 | -0.063 0.0 -0.073
AP -0.089 | -0.070 | -0.062 0.0
Adaptive* -0.0117 | -0.0127 | -0.018T | -0.0147
Random -0.114 | -0.086 | -0.056 | -0.078

scores in T> would comparable with those in 77. To mea-
sure the distances between 77 and 7> set of scores we use
(mean(Tz) — mean(T})), i.e. the average loss Kendall-7.

Table 4 represents the results of our experiment for the
Robust 2004 test collection. Each of the four metrics are
used as a selection metric for the Adaptive method and as
a system evaluation metric. The Recall metric leads to the
smallest average loss for PQ10 and P@Q100 but not for AP.
The best selection metric for AP and Recall is P@100. Thus,
there is no single selection metric that leads to the minimum
loss in Kendall-7 for all of the evaluation metrics.

We also select queries by using the Adaptive* method. As
seen from Table 4, the average loss for all the metrics is con-
siderably reduced. The last row of Table 4 represents the re-
sults of random sampling averaged over 1000 trials. In order
to investigate whether the Adaptive* method significantly
outperforms other methods, we measured the differences in
average Kendall-7 loss using the paired t-test at the signif-
icance level of 0.05. Table 4 shows that Adaptive* leads to
average Kendall-7 losses that are significantly smaller than
for the Random method and any of the selection metrics.

9. DISCUSSION

Our experiments demonstrated the advantages of the Adap-
tive query selection method and its variations. Here we con-
sider how they may be practically used to support the query
selection and assessment scenarios encountered in the TREC
type experiments. In TREC tasks, a set of queries is typi-
cally selected in advance and delivered to assessors to collect
relevance judgments. This setting ensures that all the asses-
sors are efficiently involved in the construction of relevance
judgments, and the full set of judgments is constructed in a
reasonable time.

We first investigated if we can use Adaptive to collect
a subset of queries before constructing any relevance judg-
ments. We considered the use of the query performance
predictors, e.g. [9, 18], to construct the performance matrix
X and iteratively select a subset of queries in the absence
of any relevance judgments. Since no relevance judgments
are collected, the elements of X are fixed throughout the
iterations. Once a set of queries are selected, the associated
relevance judgments are collected concurrently.

We used the pseudo-relevance judgments approach pro-
posed by Soboroff et al. [18] to construct X since (i) it

directly estimates the performance metrics and provides the
corresponding variance that is required for our model, and
(1) it is reported to be among the best available performance
predictors [11]. However, experiments with the Robust 2004
test collection showed that the accuracy of the performance
prediction was not sufficiently high and, as a result, Adap-
tive failed to perform statistically better than the random
sampling of queries.

We then took a different approach and modified Adaptive
query selection to construct relevance judgments for multiple
queries at a time. Instead of updating X at each iteration,
we updated X after selecting a sequence of k > 1 queries.
Once k queries were selected, the associated relevance judg-
ments were constructed and X matrix was updated.

We evaluated this approach on the Robust 2004 test col-
lection with 249 queries and investigated the effect of size
k on the performance of the method. We considered three
configurations k = {1, 10, and 50} where the first k queries
were randomly sampled. To deal with the sampling variance
we repeated the experiments 50 times, every time with a new
set of initial queries, and averaged the results across the ex-
periments. For each of the configurations, we calculated
Kendall-7 after selecting 60% of the queries. As the value
of k increased the associated Kendall-T decreased. However,
for k = 10 the Kendall-7 was still statistically larger than the
Kendall-T obtained for the random sampling of queries. As
k rose to 50, the Adaptive method performed no better than
Random. These results suggest that for some k we can use
our iterative method to collect relevance judgments for mul-
tiple queries at a time. However, further experiments will be
needed to find the optimal setting for k across the iterations,
and its relationship with the total number of queries.

10. CONCLUSION

In this paper we considered the task of selecting a rep-
resentative set of queries and corresponding relevance judg-
ments to achieve an optimal approximation of the systems
performance. We started with the premise that no rele-
vance judgments are available for a query before it is se-
lected for the relevance assessment and that only a limited
assessment budget is available. Thus, we provided a mathe-
matical model for query selection that explicitly formulated
the uncertainty in the performance scores that was due to
the absence of relevance judgments. The mathematical for-
mulation showed that the optimal subset of queries should
be the least correlated with each other and maximally cor-
related with the remaining queries. Furthermore, the total
uncertainty associated with the selected queries should be a
minimum.

Since the optimization problem was intractable, we pro-
posed the Adaptive algorithm in which queries were itera-
tively selected and their relevance judgments were obtained
after they were added to the query set. The relevance judg-
ments of the selected queries were used to train a classifier
to facilitate the selection of subsequent queries.

We demonstrated the effectiveness of the Adaptive algo-
rithm using two TREC test collections and a Web test col-
lection of a commercial search engine. For all three test col-
lections, the Adaptive algorithm significantly outperformed
the considered baseline methods.

Generally, the query selection methods have been criti-
cized for their lack of generalization to previously unseen
systems and multiple evaluation metrics. Our Adaptive al-



gorithm exhibited the same problems. However, we refined
the Adaptive algorithm and showed that the selected query
subset provides effective evaluations of new systems and can
reliably be used with multiple metrics.

One of the main advantages of our query selection model is
its extendibility to accommodate different sources of uncer-
tainty in measuring systems performance. In this paper, we
focused on the uncertainty of the performance estimator due
to lack of relevance judgments for a query. However, other
sources of uncertainty could be considered. Recent research
is particularly concerned with measuring uncertainty of the
systems performance due to (7) partial relevance judgments
[2, 4, 20] and (%) errors in the relevance judgments made by
human assessors [6, 12]. Our future work will expand the
theoretical model to incorporate additional sources of uncer-
tainty and explore more general cost models for constructing
test collections.
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