skip to main content
research-article

Adaptive rendering with non-local means filtering

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

We propose a novel approach for image space adaptive sampling and filtering in Monte Carlo rendering. We use an iterative scheme composed of three steps. First, we adaptively distribute samples in the image plane. Second, we denoise the image using a non-linear filter. Third, we estimate the residual per-pixel error of the filtered rendering, and the error estimate guides the sample distribution in the next iteration. The effectiveness of our approach hinges on the use of a state of the art image denoising technique, which we extend to an adaptive rendering framework. A key idea is to split the Monte Carlo samples into two buffers. This improves denoising performance and facilitates variance and error estimation. Our method relies only on the Monte Carlo samples, allowing us to handle arbitrary light transport and lens effects. In addition, it is robust to high noise levels and complex image content. We compare our approach to a state of the art adaptive rendering technique based on adaptive bandwidth selection and demonstrate substantial improvements in terms of both numerical error and visual quality. Our framework is easy to implement on top of standard Monte Carlo renderers and it incurs little computational overhead.

References

  1. Bala, K., Walter, B., and Greenberg, D. P. 2003. Combining edges and points for interactive high-quality rendering. ACM Trans. Graph. 22 (July), 631--640. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bauszat, P., Eisemann, M., and Magnor, M. 2011. Guided image filtering for interactive high-quality global illumination. Computer Graphics Forum (Proc. of Eurographics Symposium on Rendering (EGSR)) 30, 4 (June), 1361--1368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bolin, M. R., and Meyer, G. W. 1998. A perceptually based adaptive sampling algorithm. In SIGGRAPH '98, 299--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Buades, A., Coll, B., Morel, J., et al. 2005. A review of image denoising algorithms, with a new one. SIAM Journal on Multiscale Modeling and Simulation 4, 2, 490--530.Google ScholarGoogle ScholarCross RefCross Ref
  5. Buades, A., Coll, B., and Morel, J. 2008. Nonlocal image and movie denoising. International Journal of Computer Vision 76, 2, 123--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chen, J., Wang, B., Wang, Y., Overbeck, R. S., Yong, J.-H., and Wang, W. 2011. Efficient depth-of-field rendering with adaptive sampling and multiscale reconstruction. Computer Graphics Forum.Google ScholarGoogle Scholar
  7. Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. 2007. Image denoising by sparse 3-d transform-domain collaborative filtering. Image Processing, IEEE Transactions on 16, 8 (aug.), 2080--2095. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. P. A. 2010. Edge-avoiding à-trous wavelet transform for fast global illumination filtering. In Proceedings of the Conference on High Performance Graphics, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, HPG '10, 67--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH '98, 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Donoho, D. L., and Johnstone, J. M. 1994. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 3, 425--455.Google ScholarGoogle ScholarCross RefCross Ref
  11. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28 (July), 93:1--93:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Transactions on Graphics 30, 2 (Apr.), 9:1--9:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gastal, E. S. L., and Oliveira, M. M. 2012. Adaptive manifolds for real-time high-dimensional filtering. ACM Trans. Graph. 31, 4 (July), 33:1--33:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27 (August), 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ji, Z., Chen, Q., Sun, Q., and Xia, D. 2009. A moment-based nonlocal-means algorithm for image denoising. Information Processing Letters 109, 23, 1238--1244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kervrann, C., and Boulanger, J. 2006. Optimal spatial adaptation for patch-based image denoising. Image Processing, IEEE Transactions on 15, 10, 2866--2878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kollig, T., and Keller, A. 2002. Efficient multidimensional sampling. Computer Graphics Forum 21, 3, 557--563.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30 (August), 55:1--55:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, Y., Wang, J., Chen, X., Guo, Y., and Peng, Q. 2008. A robust and fast non-local means algorithm for image denoising. Journal of Computer Science and Technology 23, 2, 270--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mairal, J., Elad, M., and Sapiro, G. 2008. Sparse representation for color image restoration. Image Processing, IEEE Transactions on 17, 1 (jan.), 53--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. SIGGRAPH Comput. Graph. 21 (August), 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Overbeck, R. S., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28 (December), 140:1--140:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: a general purpose ray tracing engine. In ACM SIGGRAPH 2010 papers, ACM, New York, NY, USA, SIGGRAPH '10, 66:1--66:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation, 2nd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Portilla, J., Strela, V., Wainwright, M., and Simoncelli, E. 2003. Image denoising using scale mixtures of gaussians in the wavelet domain. Image Processing, IEEE Transactions on 12, 11, 1338--1351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.-P., Kautz, J., and Dachsbacher, C. 2009. Micro-rendering for scalable, parallel final gathering. ACM Trans. Graph. 28 (December), 132:1--132:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. In Proceedings of the 2011 SIGGRAPH Asia Conference, ACM, New York, NY, USA, SA '11, 159:1--159:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sen, P., and Darabi, S. 2012. On filtering the noise from the random parameters in monte carlo rendering. ACM Trans. Graph. 31, 3 (June), 18:1--18:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shirley, P., Aila, T., Cohen, J., Enderton, E., Laine, S., Luebke, D., and McGuire, M. 2011. A local image reconstruction algorithm for stochastic rendering. In Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '11, 9--14 PAGE@5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sijbers, J., Den Dekker, A., Van Audekerke, J., Verhoye, M., and Van Dyck, D. 1998. Estimation of the noise in magnitude mr images. Magnetic Resonance Imaging 16, 1, 87--90.Google ScholarGoogle ScholarCross RefCross Ref
  31. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Graph. 28 (May), 18:1--18:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Computer Vision, 1998. Sixth International Conference on, IEEE, 839--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '97, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. 2004. Image quality assessment: from error visibility to structural similarity. Image Processing, IEEE Transactions on 13, 4 (april), 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xu, R., and Pattanaik, S. 2005. Non-iterative, robust monte carlo noise reduction. IEEE Computer Graphics and Applications 25, 2, 31--35. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Adaptive rendering with non-local means filtering

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 6
      November 2012
      794 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2366145
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 November 2012
      Published in tog Volume 31, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader