skip to main content
10.1145/2370216.2370407acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

An evidential fusion approach for activity recognition under uncertainty in ambient intelligence environments

Published: 05 September 2012 Publication History

Abstract

In ambient intelligence environments, the information provided by robot's embedded sensors and physical or logical entities may be inaccurate and uncertain. The Dempster-Shafer evidence Theory (DST) gives a mathematical convenient framework for the evidential fusion representation and inference of uncertain information. However, DST yields counterintuitive results in high conflicting ambient intelligence situations. This paper aims to provide a new strategy to manage conflict in activity recognition process in the ambient intelligence applications. It addresses the challenge of uncertainty and proposes an evidential fusion model based on the management of conflicting situation to optimize decision making in activity recognition. The proposed approach gives intuitive interpretation for combining multiple sources in conflicting situations and avoids the problems of using The Dempster-Shafer rule of combination.

References

[1]
A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Communications, 7(1):39--59, 1994.
[2]
A. Agostini, C. Bettini, and D. Riboni. Loosely coupling ontological reasoning with an efficient middleware for context-awareness. In MobiQuitous, pages 175--182. IEEE Computer Society, 2005.
[3]
A. Bikakis, T. Patkos, G. Antoniou, and D. Plexousakism. A survey of semantics-based approaches for context reasoning in ambient intelligence. In Proceedings of the Workshop Artificial Intelligence Methods for Ambient Intelligence, pages 15--24. Springer, 2007.
[4]
O. Brdiczka, M. Langet, J. Maisonnasse, and J. L. Crowley. Detecting human behavior models from multimodal observation in a smart home. IEEE T. Automation Science and Engineering, 6(4):588--597, 2009.
[5]
H. Chen, T. W. Finin, A. Joshi, L. Kagal, F. Perich, and D. Chakraborty. Intelligent agents meet the semantic web in smart spaces. IEEE Internet Computing, 8(6):69--79, 2004.
[6]
A. P. Dempster. A generalization of Bayesian inference. Journal of the Royal Statistical Society, Series B, 30:205--247, 1968.
[7]
Dey, A. K., Abowd, G. D., and D. Salber. A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction, 16(2/4):97--166, 2001.
[8]
F. L. Gandon and N. M. Sadeh. Semantic web technologies to reconcile privacy and context awareness. J. Web Sem, 1(3):241--260, 2004.
[9]
T. Gu, H. K. Pung, and D. Zhang. Toward an OSGi-based infrastructure for context-aware applications. IEEE Pervasive Computing, 3(4):66--74, 2004.
[10]
T. Gu, H. K. Pung, and D. Q. Zhang. A bayesian approach for dealing with uncertain contexts, Apr. 16 2004.
[11]
K. Henricksen and J. Indulska. Developing context-aware pervasive computing applications: Models and approach. Pervasive and Mobile Computing, 2(1):37--64, 2006.
[12]
Hong, J. I., Landay, and J. A. An infrastructure approach to context-aware computing. Human-Computer Interaction, 16(2/4):287--303, 2001.
[13]
X. Hong, C. D. Nugent, M. D. Mulvenna, S. I. McClean, B. W. Scotney, and S. Devlin. Evidential fusion of sensor data for activity recognition in smart homes. Pervasive and Mobile Computing, 5(3):236--252, 2009.
[14]
O. B. Kwon and N. M. Sadeh. Applying case-based reasoning and multi-agent intelligent system to context-aware comparative shopping. Decision Support Systems, 37(2):199--213, 2004.
[15]
S. W. Loke. Logic programming for context-aware pervasive computing: Language support, characterizing situations, and integration with the web. In Web Intelligence, pages 44--50. IEEE Computer Society, 2004.
[16]
Y. Ma, D. V. Kalashnikov, and S. Mehrotra. Toward managing uncertain spatial information for situational awareness applications. IEEE Trans. Knowl. Data Eng, 20(10):1408--1423, 2008.
[17]
S. McKeever, J. Ye, L. Coyle, C. J. Bleakley, and S. Dobson. Activity recognition using temporal evidence theory. JAISE, 2(3):253--269, 2010.
[18]
A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell. Reasoning about uncertain contexts in pervasive computing environments. IEEE Pervasive Computing, 3(2):62--70, 2004.
[19]
M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt. A middleware infrastructure for active spaces. IEEE Pervasive Computing, 1(4):74--83, 2002.
[20]
F. Sebbak, Y. Amirat, A. Chibani, and A. Mokhtari. Context-aware ubiquitous framework services using jade-osgi integration framework. In International Conference on Machine and Web Intelligence (ICMWI), pages 48--53, 2010.
[21]
G. Shafer. A mathematical theory of evidence. Princeton university press, 1976.
[22]
A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. A semantic context-aware access control framework for secure collaborations in pervasive computing environments. In International Semantic Web Conference, volume 4273 of Lecture Notes in Computer Science, pages 473--486. Springer, 2006.
[23]
T. van Kasteren, A. K. Noulas, G. Englebienne, and B. J. A. Kröse. Accurate activity recognition in a home setting. In UbiComp, volume 344 of ACM International Conference Proceeding Series, pages 1--9. ACM, 2008.
[24]
F. Voorbraak. On the justification of Dempster's rule of combination. Artificial Intelligence, 48:171--197, 1991.
[25]
Y. Yang and J. Calmet. Ontobayes: An ontology-driven uncertainty model. In CIMCA/IAWTIC, pages 457--463. IEEE Computer Society, 2005.
[26]
L. Zadeh. On the validity of Dempster's rule of combination of evidence. Memorandum UCB/ERL-M. Electronics Research Laboratory, Univ. of California, 1979.
[27]
L. A. Zadeh. A mathematical theory of evidence (book review). AI Magazine, 5(3):81--83, 1984.
[28]
D. Zhang, M. Guo, J. Zhou, D. Kang, and J. Cao. Context reasoning using extended evidence theory in pervasive computing environments. Future Generation Comp. Syst, 26(2):207--216, 2010.
[29]
A. Zimmermann. Context-awareness in user modelling: Requirements analysis for a case-based reasoning application. In K. D. Ashley and D. G. Bridge, editors, ICCBR, volume 2689 of Lecture Notes in Computer Science, pages 718--732. Springer, 2003.

Cited By

View all
  • (2015)Resolving conflicts in knowledge for ambient intelligenceThe Knowledge Engineering Review10.1017/S026988891500013230:5(455-513)Online publication date: 30-Oct-2015

Index Terms

  1. An evidential fusion approach for activity recognition under uncertainty in ambient intelligence environments

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    UbiComp '12: Proceedings of the 2012 ACM Conference on Ubiquitous Computing
    September 2012
    1268 pages
    ISBN:9781450312240
    DOI:10.1145/2370216
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 September 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Dempster-Shafer theory
    2. activity recognition
    3. ambient intelligence
    4. conflict resolution
    5. robotics

    Qualifiers

    • Research-article

    Conference

    Ubicomp '12
    Ubicomp '12: The 2012 ACM Conference on Ubiquitous Computing
    September 5 - 8, 2012
    Pennsylvania, Pittsburgh

    Acceptance Rates

    UbiComp '12 Paper Acceptance Rate 58 of 301 submissions, 19%;
    Overall Acceptance Rate 764 of 2,912 submissions, 26%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 17 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2015)Resolving conflicts in knowledge for ambient intelligenceThe Knowledge Engineering Review10.1017/S026988891500013230:5(455-513)Online publication date: 30-Oct-2015

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media