skip to main content
research-article

Design of Liveness-Enforcing Supervisors for S3PR Based on Complementary Places

Published:01 January 2013Publication History
Skip Abstract Section

Abstract

In this article, an algorithm is proposed to design liveness-enforcing supervisors for systems of simple sequential processes with resources (S3PR) based on complementary places. Firstly, a mixed integer programming (MIP) based deadlock detection method is used to find unmarked strict minimal siphons from an infinite-capacity net. Next, the finite-capacity net, in which liveness can be enforced, is obtained by adding capacity function to the infinite-capacity net. Finally, complementary-place transformation is used to transform the finite-capacity net into an infinite-capacity net. This article focuses on adding a complementary place to each operation place that is related to unmarked siphons, deals with the deadlock problem from a new view point, and hence advances the deadlock control theory. Compared with the existing methods, the new policy is easier to implement for real industrial systems. More importantly, design of a complementary-place supervisor is very easy. Finally, in some cases, the new policy can obtain a structurally simpler supervisor with more permissive behavior than the existing methods do. A flexible manufacturing systems (FMS) example is used to compare the proposed policy with some other methods.

References

  1. Chu, F. and Xie, X. L. 1997. Deadlock analysis of Petri nets using siphons and mathematical programming. IEEE Trans. Robot. Autom. 13, 6, 793--804.Google ScholarGoogle Scholar
  2. Ezpeleta, J., Colom, J. M., and Martinez, J. 1995. A Petri net based deadlock prevention policy for Flexible manufacturing systems. IEEE Trans. Rob. Autom. 11, 2, 173--184.Google ScholarGoogle ScholarCross RefCross Ref
  3. Fanti, M. P. and Zhou, M. C. 2004. Deadlock control methods in automated manufacturing systems. IEEE Trans. Syst. Man Cybern. Part A 34, 1, 5--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ghaffarei, A., Rezg, N., and Xie, X. L. 2003. Design of a live and maximally permissive Petri net controller using the theory of regions. IEEE Trans. Rob. Autom. 19, 1, 137--142.Google ScholarGoogle ScholarCross RefCross Ref
  5. Giua, A. and Seatzu, C. 2008. Modeling and supervisory control of railway networks using Petri nets. IEEE Trans. Autom. Sci. Eng. 5, 3, 431--476.Google ScholarGoogle Scholar
  6. Hu, H. S. and Li, Z. W. 2008. An optimal-elementary-siphons based iterative deadlock prevention policy for flexible manufacturing systems. Int. J. Adv. Manuf. Technol. 38, 3--4, 309--320.Google ScholarGoogle ScholarCross RefCross Ref
  7. Hu, H. S. and Li, Z. W. 2009a. Efficient deadlock prevention policy in automated manufacturing systems using shared resources. Int. J. Adv. Manuf. Technol. 40, 50--6, 566--571.Google ScholarGoogle ScholarCross RefCross Ref
  8. Hu, H. S. and Li, Z. W. 2009b. Modeling and scheduling for manufacturing grid work-flows using timed Petri nets. Int. J. Adv. Manuf. Technol. 42, 5--6, 553--568.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hu, H. S., Zhou, M. C., and Li, Z. W. 2009. Liveness enforcing supervision of video streaming systems using nonsequential Petri nets. IEEE Trans. Multimedia 11, 8, 1446--1456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hu, H. S., Zhou, M. C., and Li, Z. W. 2010a. Low-cost high-performance supervision in ratio-enforced automated manufacturing systems using timed Petri nets. To appear in IEEE Trans. Autom. Sci. Engin.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hu, H. S., Zhou, M. C., and Li, Z. W. 2010b. Algebraic synthesis of timed supervisor for automated manufacturing systems using Petri nets. To appear in IEEE Trans. Autom. Sci. Engin.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hu, H. S., Zhou, M. C., and Li, Z. W. 2010c. Supervisor design to enforce production ratio and liveness using Petri nets.To appear in IEEE Trans. Syst. Man Cybern.-Part A. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Huang, Y. S., Jeng, M. D., Xie, X. L., and Chung, D. H. 2006. Siphon-based deadlock prevention policy for flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. Part A 36, 6, 1248--1256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang, Y. S., Jeng, M. D., Xie, X. L., and Chung, S. L. 2001a. A deadlock prevention policy for flexible manufacturing systems using siphons. In Proceedings of the IEEE International Conference on Robotics and Automation. 541--546.Google ScholarGoogle Scholar
  15. Huang, Y. S., Jeng, M. D., Xie, X. L., and Chung, S. L. 2001b. Deadlock prevention policy based on Petri nets and siphons. Int. J. Prod. Res. 39, 2, 283--305.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jeng, M. D. 1997. A Petri net synthesis theory for modeling flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. Part B 27, 2, 169--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jeng, M. D. and Dicesare, F. 1995. Synthesis using resource control nets for modeling shared-resource systems. IEEE Trans. Rob. Autom. 11, 3, 317--327.Google ScholarGoogle ScholarCross RefCross Ref
  18. Jeng, M. D., Xie, X. L., and Chung, S. L. 2004. ERCN* merged nets for modeling degraded behavior and parallel processes in semiconductor manufacturing systems. IEEE Trans. Syst. Man Cybern. Part A 34, 1, 102--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jeng, M. D., Xie, X. L., and Peng, M. Y. 2002. Process nets with resources for manufacturing modeling and their analysis. IEEE Trans. Rob. Autom. 18, 6, 875--889.Google ScholarGoogle ScholarCross RefCross Ref
  20. Li, Z. W. and Zhao, M. 2008. On controllability of dependent siphons for deadlock prevention in generalized Petri nets. IEEE Trans. Syst., Man, Cybern. A Syst., Humans, 38, 2, 369--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Li, Z. W. and Zhou, M. C. 2004. Elementary siphons of Petri nets and their application to deadlock prevention in flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. Part A 34, 1, 38--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, Z. W. and Zhou, M. C. 2006a. Clarifications on the definitions of elementary siphons of Petri nets. IEEE Trans. Syst. Man Cybern. Part A 36, 6, 1227--1229. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, Z. W. and Zhou, M. C. 2006b. Two-stage method for synthesizing liveness-enforcing supervisors for flexible manufacturing systems using Petri nets. IEEE Trans. Ind. Inf. 2, 4, 313--325.Google ScholarGoogle ScholarCross RefCross Ref
  24. Li, Z. W. and Zhou, M. C. 2008a. Control of elementary and dependent siphons in Petri nets and their application. IEEE Trans. Syst. Man Cybern. Part A 38, 1, 133--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Li, Z. W. and Zhou, M. C. 2008b. On siphon computation for deadlock control in a class of Petri nets. IEEE Trans. Syst. Man Cybern. Part A 38, 3, 667--679. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Li, Z. W. and Zhou, M. C. 2009. Deadlock Resolution in Automated Manufacturing Systems: A Novel Petri Net Approach. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Li, Z. W. and Zhou, M. C. 2010. Synthesis of structurally simple supervisors enforcing generalized mutual exclusion constraints in Petri nets. IEEE Trans. Syst. Man Cybern. Part C 40, 3, 330--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Li, Z. W., Hu, H. S., and Wang, A. R. 2007a. Design of liveness-enforcing supervisors for flexible manufacturing systems using Petri nets. IEEE Trans. Syst. Man Cybern. Part B 37, 4, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Li, Z. W., Uzam, M., and Zhou, M. C. 2007b. Deadlock control of concurrent manufacturing processes sharing finite resources. Int. J. Adv. Manuf. Technol. 38, 787--800.Google ScholarGoogle ScholarCross RefCross Ref
  30. Li, Z. W., Zhou, M. C., and Uzam, M. 2007c. Deadlock control policy for a class of petri nets without complete siphon enumeration. IET Control Theory Appl. 1, 6, 1594--1605.Google ScholarGoogle ScholarCross RefCross Ref
  31. Li, Z. W., Zhou, M. C., and Wu, N. Q. 2008b. A survey and comparison of Petri net-based deadlock prevention policies for flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. Part C 38, 2, 17--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Li, Z. W., Zhou, M. C., and Jeng, M. D. 2008a. A maximally permissive deadlock prevention policy for FMS based on Petri net siphon control and the theory of regions. IEEE Trans. Autom. Sci. Eng. 5, 1, 182--188.Google ScholarGoogle ScholarCross RefCross Ref
  33. Liu, D., Li, Z. W., and Zhou, M. C. 2010. Liveness of an Extended S3PR. Automatica 46, 6, 1008--1018. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Luo, J. L., Wu, W. M., Su, H. Y., and Chu, J. 2009. Supervisor Synthesis for Enforcing a class of GMECs on Petri Nets. IEEE Trans. Syst. Man Cybernetics, Part A 39, 36, 1237--1246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Moody, J., Yamalidou, K., Lemmon, M., and Antsaklis, P. 1996. Feedback control of Petri nets based on place invariants. Automatica, 32, 1, 15--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Murata, T. 1989. Petri nets: Property, analysis, and applications. In Proc. IEEE 77, 4, 41--80.Google ScholarGoogle ScholarCross RefCross Ref
  37. Park, J. and Reveliotis, S. A. 2001. Deadlock avoidance in sequential resource allocation systems with multiple resource acquisitions and flexible routings. IEEE Trans. Autom. Control 46, 10, 1572--1583.Google ScholarGoogle ScholarCross RefCross Ref
  38. Piroddi, L., Cordone, R., and Fumagalli, I. 2008. Selective siphon control for deadlock prevention in Petri nets. IEEE Trans. Syst. Man Cybern. Part A 38, 6, 1337--1348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Piroddi, L., Cordone, R., and Fumagalli, I. 2009. Combined siphon and marking generation for deadlock prevention in Petri nets. IEEE Trans. Syst. Man Cybern. Part A 39, 3, 650--661. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Starke P H. 2003. INA: Integrated Net Analyzer. http://www2.informatik.hu-berlin.de/~starke/ina.html.Google ScholarGoogle Scholar
  41. Uzam, M. 2002. An optimal deadlock prevention policy for flexible manufacturing systems using Petri net models with resources and the theory of regions. Int. J. Adv. Manuf. Technol. 19, 3, 192--208.Google ScholarGoogle ScholarCross RefCross Ref
  42. Uzam, M. 2004. The use of Petri net reduction approach for an optimal deadlock prevention policy for flexible manufacturing systems. Int. J. Adv. Manuf. Technol. 23, 3--4, 204--219.Google ScholarGoogle ScholarCross RefCross Ref
  43. Uzam, M., Li, Z. W., and Zhou, M. C. 2007. Identification and elimination of redundant control places in Petri net based liveness enforcing supervisors of FMS. Int. J. Adv. Manuf. Technol. 35, 1--2, 150--168.Google ScholarGoogle ScholarCross RefCross Ref
  44. Uzam, M., and Zhou, M. C. 2006. An improved iterative synthesis method for liveness enforcing supervisors of flexible manufacturing systems. Int. J. Prod. Res. 44, 10, 1987--2030.Google ScholarGoogle ScholarCross RefCross Ref
  45. Uzam, M., and Zhou, M. C. 2007b. An iterative synthesis approach to Petri net-based deadlock prevention policy for flexible manufacturing systems. IEEE Trans. Syst. Man Cybern. Part A 37, 3, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wang, S. G., and Yan, G. F. 2005. A method for the design of Petri net controller enforcing general linear constraints. J. Softw. 16, 3, 419--426.Google ScholarGoogle ScholarCross RefCross Ref
  47. Wang, S. G., Yan, G. F., and Jiang, J. P. 2003. Application of net reduction to feedback controller design of Petri nets. J. Softw. 14, 6, 1037--1042 (in Chinese).Google ScholarGoogle Scholar
  48. Wu, W. M., Su, H. Y., and Chu, J. 2003. Synthesis of Petri nets controller for discrete event systems based on finite capacity places. Control Theory Appl. 228--238.Google ScholarGoogle Scholar
  49. Wysk, R. A., Yang, N. S., and Joshi, S. 1991. Detection of deadlocks in flexible manufacturing cells. IEEE Trans. Robot. Autom. 7, 6, 853--859.Google ScholarGoogle ScholarCross RefCross Ref
  50. Zhou, M. C., and Dicesare, F. 1991. Parallel and sequential mutual exclusions for Petri net modeling of manufacturing systems with shared resources. IEEE Trans. Rob. Autom. 7, 4, 515--527.Google ScholarGoogle ScholarCross RefCross Ref
  51. Zhou, M. C., and Dicesare, F. 1993. Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Kluwer Academic Publishers, London.Google ScholarGoogle Scholar
  52. Zhou, M. C., Dicesare, F., and Desrochers, A. A. 1992. A hybrid methodology for synthesis of Petri nets for manufacturing systems. IEEE Trans. Rob. Autom. 8, 3, 350--361.Google ScholarGoogle ScholarCross RefCross Ref
  53. Zhou, M. C., Dicesare, F., and Rudolph, D. 1992. Design and implementation of a Petri net based supervisor for a flexible manufacturing system. IFAC J. Automatica 28, 6, 1199--1208. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Design of Liveness-Enforcing Supervisors for S3PR Based on Complementary Places

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Embedded Computing Systems
        ACM Transactions on Embedded Computing Systems  Volume 12, Issue 1
        Special Issue on Modeling and Verification of Discrete Event Systems
        January 2013
        350 pages
        ISSN:1539-9087
        EISSN:1558-3465
        DOI:10.1145/2406336
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 January 2013
        • Accepted: 1 June 2010
        • Received: 1 February 2010
        Published in tecs Volume 12, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader