skip to main content
10.1145/2414536.2414539acmotherconferencesArticle/Chapter ViewAbstractPublication PagesozchiConference Proceedingsconference-collections
research-article

A novel 3D interactive visualization for medical data analysis

Published:26 November 2012Publication History

ABSTRACT

This paper describes a new three-dimensional interactive visualization supporting large scale medical data analysis. We provide a simple and effective view so that the biomedical information can be easily perceived. Our visualization also embeds a novel mechanism to prevent disorientation by maintaining the orientation of objects and labels during the navigation. From the overview of patient population, users can select one, multiple patients or a group of patients to analyse further. We demonstrate our approach with the medical scientists working on a case study of childhood cancer patients, examplifying how they could use the tool to confirm existing hypotheses and to discover new scientific insights.

References

  1. Barsky, A., Munzner, T., Gardy, J., and Kincaid, R. 2008. Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2008). 14, 6, pp. 1253--1260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Belkin M., Niyogi P. 2001. Laplacian Eigenmaps and spectral techniques for embedding and clustering. In Proceedings of Advances in Neural Information Processing Systems. MIT Press: Cambridge, MA, 585--591.Google ScholarGoogle Scholar
  3. Breiman, L, Radom Forests, Machine Learning, 45 (2001), pp. 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Catchpoole, D. R., Kennedy, P., Skillicorn, D. B. and Simoff, S. 2010. The curse of dimensionality: a blessing to personalized medicine. Journal of Clinical Oncology. 28, 34 (Dec. 2010), 723--724.Google ScholarGoogle ScholarCross RefCross Ref
  5. Chao, S., Lihui, C. 2005. Feature dimension reduction for microarray data analysis using locally linear embedding. In Proceedings of APBC, pp. 211--217.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chen, C. 2005. Top 10 Unsolved Information Visualization Problems. IEEE Computer Graphics and Applications. 25, 4, pp. 12--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, Y., Meltzer, P. S. 2005. Gene expression analysis via multidimensional scaling. Current Protocols in Bioinformatics, Chapter 7, unit 7.11.Google ScholarGoogle Scholar
  8. Gehlenborg, N., O'Donoghue, S., Baliga, N., Goesmann, A., Hibbs, M., Kitano, H., Kohlbacher, O., Neuweger, H., Schneider, R., Tenenbaum, D., and Gavin, A. 2010. Visualization of omics data for systems biology. Nature Methods, 7:S56--S68.Google ScholarGoogle ScholarCross RefCross Ref
  9. Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, USA.Google ScholarGoogle Scholar
  10. Goronzy, J. J., Matteson, E. L., Fulbright, J. W. et al. (2004): Prognostic markers of radiographic progression in early rheumatoid arthritis. Arthritis & Rheumatism. 50, 1, pp. 43--54.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hu, Z. et al. 2009. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. 37 (web server issue), W115--W121.Google ScholarGoogle Scholar
  12. Jolliffe, I. T. 2002. Principle Component Analysis. Springer, New York, 2002.Google ScholarGoogle Scholar
  13. Junker, B. H., Klukas, C. & Schreiber, F. 2006. VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics. 7, 109.Google ScholarGoogle ScholarCross RefCross Ref
  14. McGuffin, M. J. & Jurisica, I. 2009. Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Trans. Vis. Comput. Graph. 15, pp. 937--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. McLachlan, G. J., Do, K. A., Ambroise, C. 2004. Analyzing Microarray Gene Expression Data. Wiley, Hoboken, N. J.Google ScholarGoogle Scholar
  16. McLachlan, G. J., Wang, K. and Ng, S. K. 2008. Large-scale simultaneous inference with applications to the detection of differential expression with microarray data (with discussion). Statistica. 68, pp. 1--30.Google ScholarGoogle Scholar
  17. Nguyen Q, Gleeson A, Ho N, Huang M, Simoff S, Catchpoole D, 2011, Visual Analytics of Clinical and Genetic Datasets of Acute Lymphoblastic Keukaemia, ICONIP 2011 - 18th International Conference, pp. 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nguyen, Q. V., Simoff, S. and Huang, M. L., Interactive Visualization with User Perspective: A New Concept, in Proceedings of VINCI 2010 - The 3rd Visual Information Communication - International Symposium, Beijing, China, ACM (2010), 84--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Procter, J., Thompson, J., Letunic, I., Creevey, C., Jossinet, F., and Barton, G. J. 2010. Visualization of multiple alignments, phylogenies and gene family evolution. Nature Methods, 7, S16--25.Google ScholarGoogle ScholarCross RefCross Ref
  20. Qi, Q., Zhao, Y., Li., M. C., Simon, R. 2009. Non-negative matrix factorization of gene expression profiles: a plug-in for BRB-arraytools. Bioinformatics. 25, 4, pp. 545--547. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Thomas, J. and Kielman, J. "Challenges for Visual Analytics" (2009): Information Visualization, 8(4), pp. 309--314. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A novel 3D interactive visualization for medical data analysis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      OzCHI '12: Proceedings of the 24th Australian Computer-Human Interaction Conference
      November 2012
      692 pages

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 November 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate362of729submissions,50%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader