skip to main content
research-article

RAID triple parity

Published: 18 December 2012 Publication History

Abstract

RAID triple parity (RTP) is a new algorithm for protecting against three-disk failures. It is an extension of the double failure correction Row-Diagonal Parity code. For any number of data disks, RTP uses only three parity disks. This is optimal with respect to the amount of redundant information required and accessed. RTP uses XOR operations and stores all data un-encoded. The algorithm's parity computation complexity is provably optimal. The decoding complexity is also much lower than that of existing comparable codes. This paper also describes a symmetric variant of the algorithm where parity computation is identical to triple reconstruction.

References

[1]
M. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd: An efficient scheme for tolerating double disk failures in raid architectures. In Proc. of the Annual International Symposium on Computer Architecture., pages 245--254, 1994.
[2]
M. Blaum, J. Bruck, and A. Vardy. Mds array codes with independent parity symbols. IEEE Trans. Information Theory., 42(2):529--542, March 1996.
[3]
P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar. Row-diagonal parity for double disk failure correction. Proc. of USENIX FAST, March-April 2004.
[4]
J. L. Hafner, V. Deenadhayalan, and K. K. Rao. Matrix methods for lost data reconstruction in erasure codes. Proc. of USENIX FAST, San Francisco, CA, December 2005.
[5]
C. Huang and L. Xu. Star : An efficient coding scheme for correcting triple storage node failures. Proc. of USENIX FAST, December 2005.
[6]
F. J. MacWilliams and J. J. A. Sloane. The theory of error-correcting codes. 1977.
[7]
D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inexpensive disks (raid). In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 109--116, 1988.

Cited By

View all
  • (2024)A Survey of the Past, Present, and Future of Erasure Coding for Storage SystemsACM Transactions on Storage10.1145/3708994Online publication date: 31-Dec-2024
  • (2024)New Constructions of MDS Array Codes and Optimal Locally Repairable Array CodesIEEE Transactions on Information Theory10.1109/TIT.2024.335311170:3(1806-1822)Online publication date: 1-Mar-2024
  • (2023)Extended EVENODD+ and STAR+ With Asymptotic Optimal Update and Efficient DecodingIEEE Transactions on Communications10.1109/TCOMM.2023.325371771:5(2563-2575)Online publication date: May-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGOPS Operating Systems Review
ACM SIGOPS Operating Systems Review  Volume 46, Issue 3
December 2012
81 pages
ISSN:0163-5980
DOI:10.1145/2421648
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 December 2012
Published in SIGOPS Volume 46, Issue 3

Check for updates

Author Tags

  1. RAID recovery
  2. RDP code
  3. disk failure
  4. recovery algorithm

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Survey of the Past, Present, and Future of Erasure Coding for Storage SystemsACM Transactions on Storage10.1145/3708994Online publication date: 31-Dec-2024
  • (2024)New Constructions of MDS Array Codes and Optimal Locally Repairable Array CodesIEEE Transactions on Information Theory10.1109/TIT.2024.335311170:3(1806-1822)Online publication date: 1-Mar-2024
  • (2023)Extended EVENODD+ and STAR+ With Asymptotic Optimal Update and Efficient DecodingIEEE Transactions on Communications10.1109/TCOMM.2023.325371771:5(2563-2575)Online publication date: May-2023
  • (2023)EVENODD* Codes with More Flexible Parameters and Efficient DecodingGLOBECOM 2023 - 2023 IEEE Global Communications Conference10.1109/GLOBECOM54140.2023.10437405(7339-7344)Online publication date: 4-Dec-2023
  • (2023)Reed-Solomon Codes Over Ring with Lower Computational Complexity2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386696(2362-2368)Online publication date: 15-Dec-2023
  • (2023)Optimal Repair Algorithm of Single-Disk Failure for Array Codes with Local Properties2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386568(2319-2325)Online publication date: 15-Dec-2023
  • (2022)Three Efficient All-Erasure Decoding Methods for Blaum–Roth CodesEntropy10.3390/e2410149924:10(1499)Online publication date: 20-Oct-2022
  • (2022)SA-RSR: a read-optimal data recovery strategy for XOR-coded distributed storage systemsSA-RSR: 一种适用于异或类纠删码分布式存储系统的数据读取最优恢复方法Frontiers of Information Technology & Electronic Engineering10.1631/FITEE.210024223:6(858-875)Online publication date: 5-Jul-2022
  • (2022)BibliographyStorage Systems10.1016/B978-0-32-390796-5.00023-1(641-693)Online publication date: 2022
  • (2022)Coding for multiple disk failuresStorage Systems10.1016/B978-0-32-390796-5.00015-2(337-348)Online publication date: 2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media