skip to main content
research-article

Improving relative depth judgments in augmented reality with auxiliary augmentations

Published:04 March 2013Publication History
Skip Abstract Section

Abstract

Significant depth judgment errors are common in augmented reality. This study presents a visualization approach for improving relative depth judgments in augmented reality. The approach uses auxiliary augmented objects in addition to the main augmentation to support ordinal and interval depth judgment tasks. The auxiliary augmentations are positioned spatially near real-world objects, and the location of the main augmentation can be deduced based on the relative depth cues between the augmented objects. In the experimental part, the visualization approach was tested in the “X-ray” visualization case with a video see-through system. Two relative depth cues, in addition to motion parallax, were used between graphical objects: relative size and binocular disparity. The results show that the presence of auxiliary objects significantly reduced errors in depth judgment. Errors in judging the ordinal location with respect to a wall (front, at, or behind) and judging depth intervals were reduced. In addition to reduced errors, the presence of auxiliary augmentation increased the confidence in depth judgments, and it was subjectively preferred. The visualization approach did not have an effect on the viewing time.

References

  1. Allison, R., Gillam, B., and Vecellio, E. 2009. Binocular depth discrimination and estimation beyond interaction space. J. Vision 9, 1, 10, 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  2. Avery, B., Sandor, C., and Thomas, B. H. 2009. Improving spatial perception for augmented reality X-ray vision. In Proceedings of the Virtual Reality Conference. IEEE, Los Alamitos, CA, 79--82.Google ScholarGoogle Scholar
  3. Avery, B., Thomas, B. H., and Piekarski, W. 2008. User evaluation of see-through vision for mobile outdoor augmented reality. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR '08) IEEE, Los Alamitos, CA, 69--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bane, R. and Hollerer, T. 2004. Interactive tools for virtual X-ray vision in mobile augmented reality. In Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR '04), IEEE, Los Alamitos, CA, 231--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Birkfellner, W., Figl, M., Huber, K., Watzinger, F., Wanschitz, F., Hummel, J., Hanel, R., Greimel, W., Homolka, P., Ewers, R., and Bergmann, H. 2002. A head-mounted operating binocular for augmented reality visualization in medicine - Design and initial evaluation. IEEE Trans. Medical Imag. 21, 8, 991--997.Google ScholarGoogle ScholarCross RefCross Ref
  6. Collett, T. S. 1985. Extrapolating and interpolating surfaces in depth. In Proc. Royal Soc. London. Series B. Biol. Sci. 224, 1234, 43--56.Google ScholarGoogle Scholar
  7. Cutting, J. E. and Vishton, P. M. 1995. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Handbook of Perception and Cognition, W. Epstein and S. Rogers Eds., vol. 5, Academic Press, San Diego, CA., 69--117.Google ScholarGoogle Scholar
  8. De Silva, V., Fernando, A., Worrall, S., Arachchi, H. K., and Kondoz, A. 2011. Sensitivity analysis of the human visual system for depth cues in stereoscopic 3-D displays. IEEE Trans. Multimedia 13, 3, 498--506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dey, A., Cunningham, A., and Sandor, C. 2010. Evaluating depth perception of photorealistic mixed reality visualizations for occluded objects in outdoor environments. In Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology (VRST '10). 211--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Drascic, D. and Milgram, P. 1991. Pointing accuracy of a virtual stereographic pointer in a real stereoscopic video world. In Proceedings of the SPIE Stereoscopic Displays and Applications II. Vol. 1457, 623--626.Google ScholarGoogle Scholar
  11. Drascic, D. and Milgram, P. 1996. Perceptual Issues in augmented reality. In Proceedings of the SPIE Stereoscopic Displays and Applications. Vol. 2653, 123--134.Google ScholarGoogle Scholar
  12. Ellis, S. R. and Menges, B. M. 1998. Localization of virtual objects in the near visual field. Hum. Factors 40, 3, 415--431.Google ScholarGoogle ScholarCross RefCross Ref
  13. Erkelens, C. J. and Collewijn, H. 1985. Motion perception during dichoptic viewing of moving random-dot stereograms. Vision Res. 25, 4, 583--588.Google ScholarGoogle ScholarCross RefCross Ref
  14. Faubert, J. 2001. Motion parallax, stereoscopy, and the perception of depth: Practical and theoretical issue. In Proceedings of the SPIE on Three-Dimensional Video and Display: Devices and Systems. 168--191.Google ScholarGoogle ScholarCross RefCross Ref
  15. Feiner, S., Webster, A., Krueger, T., MacIntyre, B., and Keller, E. 1995. Architectural Anatomy. Presence: Teleoper. Virtual Environ. 4, 3, 318--325.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Foley, J. M. 1991. Stereoscopic distance perception. In Pictorial Communication in Real and Virtual Environments, S. Ellis et al. Eds., Taylor&Francis. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Furmanski, C., Azuma, R., and Daily, M. 2002. Augmented-reality visualizations guided by cognition: perceptual heuristics for combining visible and obscured information. In Proceedings of the International Symposium on Mixed and Augmented Reality. IEEE, Los Alamitos, CA, 215--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gilinsky, A. S. 1951. Perceived size and distance in visual space. Psychol. Rev. 58, 460--482.Google ScholarGoogle ScholarCross RefCross Ref
  19. Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., and Kearney, J. K. 2010. How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Trans. Appl. Percept. 7, 4, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Häkkinen, J. and Nyman, G. 1996. Depth asymmetry in Da Vinci stereopsis. Vision Res. 36, 23, 3815--3819.Google ScholarGoogle ScholarCross RefCross Ref
  21. Howard, H. J. 1919. A test for the judgment of distance. Trans. Amer. Ophthalmological Soc. 17, 195--235.Google ScholarGoogle Scholar
  22. Hubona, G. S., Wheeler, P. N., Shirah, G. W., and Brandt, M. 1999. The relative contributions of stereo, lighting, and background scenes in promoting 3D depth visualization. ACM Trans. Comput.-Hum. Interact. 6, 3, 214--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Image Engineering. 2012. LED-PANEL. http://www.imageengineering.de/index.php?option=com_content&view=article&id= 76&Itemid=68.Google ScholarGoogle Scholar
  24. Johnston, E. B. 1991. Systematic distortions of shape from stereopsis. Vision Res. 31, 7--8, 1351--1360.Google ScholarGoogle ScholarCross RefCross Ref
  25. Jurgens, V., Cockburn, A., and Billinghurst, M. 2006. Depth cues for augmented reality stakeout. In Proceedings of the 7th ACM SIGCHI New Zealand Chapter International Conference on Computer-Human Interaction: Design Centered HCI (CHINZ '06). ACM, New York, 117--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kanizsa, G. 1979. Organization in Vision: Essays on Gestalt Perception. Praeger, New York.Google ScholarGoogle Scholar
  27. Kruijff, E., Swan, J., and Feiner, S. 2010. Perceptual issues in augmented reality revisited. In Proceedings of the 9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, Los Alamitos, CA, 3--12.Google ScholarGoogle Scholar
  28. Kytö , M., Häkkinen, J., and Oittinen, P. 2011. Stereoscopic viewing facilitates the perception of crowds. In Proceedings of the IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS). IEEE, Los Alamitos, 49--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kytö, M., Nuutinen, M., and Oittinen, P. 2011. Method for measuring stereo camera depth accuracy based on stereoscopic vision. In SPIE/IS&T Electronic Imaging Three-Dimensional Imaging, Interaction, and Measurement. Vol. 7864, 1--9.Google ScholarGoogle Scholar
  30. Lambooij, M., IJsselsteijn, W., Fortuin, M., and Heynderickx, I. 2009. Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imag. Sci. Technol. 53, 3, 030201--14.Google ScholarGoogle ScholarCross RefCross Ref
  31. Landy, M. S., Maloney, L. T., Johnston, E. B., and Young, M. 1995. Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Res. 35, 3, 389--412.Google ScholarGoogle ScholarCross RefCross Ref
  32. Liu, Y., Bovik, A. C., and Cormack, L. K. 2008. Disparity statistics in natural scenes. J. Vision 8, 11, 19, 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  33. Livingston, M., Zhuming, A., and Decker, J. 2009. A user study towards understanding stereo perception in head-worn augmented reality displays. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. IEEE, Los Alamitos, CA, 53--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Livingston, M. A., Swan, J. E., II., Gabbard, J. L., Höllerer, T. H., Hix, D., Julier, S. J., Baillot, Y., and Brown, D. 2003. Resolving multiple occluded layers in augmented reality. In Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE, Los Alamitos, CA, 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Loomis, J. M., da Silva, J. A., Fujita, N., and Fukusima, S. S. 1992. Visual space perception and visually directed action. J. Experiment. Psychol. Human Percept. Perform. 18, 4, 906--921.Google ScholarGoogle ScholarCross RefCross Ref
  36. McCandless, J. W., Ellis, S. R., and Adelstein, B. D. 2000. Localization of a time-delayed, monocular virtual object superimposed on a real environment. Presence 9, 1, 15--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. McKee, S. P. and Taylor, D. G. 2010. The precision of binocular and monocular depth judgments in natural settings. J. Vision 10, 5, 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  38. Nagata, S. 1991. How to reinforce perception of depth in single two-dimensional pictures. In Pictorial Communication in Virtual and Real Environments, S. R. Ellis Eds., Taylor&Francis, 527--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Nakayama, K. 1996. Binocular visual surface perception. In Proc. Nat. Acad. Sci. 93, 2, 634--639.Google ScholarGoogle ScholarCross RefCross Ref
  40. Nakayama, K., Shimojo, S., and Silverman, G. H. 1989. Stereoscopic depth: Its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18, 1, 55--68.Google ScholarGoogle ScholarCross RefCross Ref
  41. Napieralski, P. E., Altenhoff, B. M., Bertrand, J. W., Long, L. O., Babu, S. V., Pagano, C. C., Kern, J., and Davis, T. A. 2011. Near-field distance perception in real and virtual environments using both verbal and action responses. ACM Trans. Appl. Percept. 8, 3, 1--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ooi, T. L., Wu, B., and He, Z. J. 2001. Distance determined by the angular declination below the horizon. Nature 414, 6860, 197--200.Google ScholarGoogle Scholar
  43. OpenCV. 2011. Version 2.3. http://opencv.willowgarage.com/.Google ScholarGoogle Scholar
  44. O'Shea, R. P., Blackburn, S. G., and Ono, H. 1994. Contrast as a depth cue. Vision Res. 34, 12 , 1595--1604.Google ScholarGoogle Scholar
  45. Palmisano, S., Gillam, B., Govan, D. G., Allison, R. S., and Harris, J. M. 2010. Stereoscopic perception of real depths at large distances. J. Vision 10, 6, 19, 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  46. Peterson, S., Axholt, M., and Ellis, S. R. 2008. Managing visual clutter: A generalized technique for label segregation using stereoscopic disparity. In IEEE Virtual Reality, 169--176.Google ScholarGoogle Scholar
  47. Peterson, S. D., Axholt, M., and Ellis, S. R. 2009. Objective and subjective assessment of stereoscopically separated labels in augmented reality. Comput. Graph. 33, 1, 23--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Philbeck, J. W. and Loomis, J. M. 1997. Comparison of two indicators of perceived egocentric distance under full-cue and reduced-cue conditions. J. Exper. Psychol. Hum. Percept. Perform. 23, 1, 72--85.Google ScholarGoogle ScholarCross RefCross Ref
  49. Polys, N. F., Bowman, D. A., and North, C. 2011. The role of depth and gestalt cues in information-rich virtual environments. Int. J. Hum.-Comput. Stud. 69, 1--2 , 30--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ramachandran, V. S. and Cavanagh, P. 1985. Subjective contours capture stereopsis. Nature 317, 527--530.Google ScholarGoogle ScholarCross RefCross Ref
  51. Reinhart, W. F. 1990. Comparison of depth cues for relative depth judgments. In Proceedings of the. SPIE on Stereoscopic Displays and Applications. Vol. 1256, 12--21.Google ScholarGoogle ScholarCross RefCross Ref
  52. Reinhart, W. F. 1991. Depth cueing for visual search and cursor positioning. In Proceedings of the SPIE on Stereoscopic Displays and Applications. Vol. 1457, 221--232.Google ScholarGoogle ScholarCross RefCross Ref
  53. Rogers, B. J. and Collett, T. S. 1989. The appearance of surfaces specified by motion parallax and binocular disparity. Quart. J. Hum. Exper. Psychol. 41, 4, 697--717.Google ScholarGoogle ScholarCross RefCross Ref
  54. Rolland, J. P. and Fuchs, H. 2000. Optical versus video see-through head-mounted displays in medical visualization. Presence 9, 3, 287--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Sandor, C., Cunningham, A., Dey, A., and Mattila, V. V. 2010. An augmented reality X-ray system based on visual saliency. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality. IEEE, Los Alamitos, CA, 27--36.Google ScholarGoogle Scholar
  56. Sielhorst, T., Bichlmeier, C., Heining, S., and Navab, N. 2006. Depth perception - A major issue in medical AR: Evaluation study by twenty surgeons. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. 364--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Singh, G. J. S., II and Jones, J. 2010. Depth judgment measures and occluding surfaces in near-field augmented reality. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization. Vol. 1, 149--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Sugano, N., Kato, H., and Tachibana, K. 2003. The effects of shadow representation of virtual objects in augmented reality. In Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, Los Alamitos, CA, 76--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Sundet, J. M. 1978. Effects of colour on perceived depth: Review of experiments and evaluation of theories. Scandinavian J. Psychol. 19, 1, 133--143.Google ScholarGoogle ScholarCross RefCross Ref
  60. Suzuki, S. and Be, K. 1985. Topological structural analysis of digitized binary images by border following. Comput. Vision, Graph. Image Process. 30, 1, 32--46.Google ScholarGoogle ScholarCross RefCross Ref
  61. Swan, J. and Livingston, M. 2006. A perceptual matching technique for depth judgments in optical, see-through augmented reality. In Virtual Reality. 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Takashi, S., Kim, J., Hoffman, D. M., and Banks, M. S. 2011. The zone of comfort : Predicting visual discomfort with stereo displays. J. Vision 11, 8, 1--29.Google ScholarGoogle Scholar
  63. Takeichi, H., Watanabe, T., and Shimojo, S. 1992. Illusory occluding contours and surface formation by depth propagation. Perception 21, 2, 177--184.Google ScholarGoogle ScholarCross RefCross Ref
  64. Tsuda, T., Yamamoto, H., Kameda, Y., and Ohta, Y. 2005. Visualization methods for outdoor see-through vision. In Proceedings of the International Conference on Augmented Tele-Existence. ACM, New York, 62--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Ware, C. 2004. Information Visualization: Perception for Design. Morgan Kaufmann, San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Willemsen, P., Gooch, A. A., Thompson, W. B., and Creem-Regehr, S. H. 2008. Effects of stereo viewing conditions on distance perception in virtual environments. Presence: Teleoper. Virtual Environ. 17, 1, 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Wither, J. and Hollerer, T. 2005. Pictorial depth cues for outdoor augmented reality. In Proceedings of the IEEE International Symposium on Wearable Computers. IEEE, Los Alamitos, CA, 92--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Yeh, Y.-Y. and Silverstein, L. 1990. Limits of fusion and depth judgment in stereoscopic color displays. Hum. Factors 32, 1, 45--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Zhai, S., Buxton, W., and Milgram, P. 1996. The partial-occlusion effect: Utilizing semitransparency in 3D human-computer interaction. ACM Trans. Comput. Hum. Interact. 3, 3, 254--284. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Improving relative depth judgments in augmented reality with auxiliary augmentations

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Applied Perception
              ACM Transactions on Applied Perception  Volume 10, Issue 1
              February 2013
              120 pages
              ISSN:1544-3558
              EISSN:1544-3965
              DOI:10.1145/2422105
              Issue’s Table of Contents

              Copyright © 2013 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 4 March 2013
              • Revised: 1 October 2012
              • Accepted: 1 October 2012
              • Received: 1 February 2012
              Published in tap Volume 10, Issue 1

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader