skip to main content
research-article

NLEVP: A Collection of Nonlinear Eigenvalue Problems

Published: 01 February 2013 Publication History

Abstract

We present a collection of 52 nonlinear eigenvalue problems in the form of a MATLAB toolbox. The collection contains problems from models of real-life applications as well as ones constructed specifically to have particular properties. A classification is given of polynomial eigenvalue problems according to their structural properties. Identifiers based on these and other properties can be used to extract particular types of problems from the collection. A brief description of each problem is given. NLEVP serves both to illustrate the tremendous variety of applications of nonlinear eigenvalue problems and to provide representative problems for testing, tuning, and benchmarking of algorithms and codes.

References

[1]
Al-Ammari, M. 2011. Analysis of structured polynomial eigenvalue problems. Ph.D. thesis, MIMS EPrint 2011.89, Manchester Institute for Mathematical Sciences, University of Manchester, Manchester, UK.
[2]
Al-Ammari, M. and Tisseur, F. 2012. Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification. Linear Algebra Appl. 436, 10, 3954--3973.
[3]
Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., and Kimura, K. 2010. A numerical method for polynomial eigenvalue problems using contour integral. Japan J. Ind. Appl. Math. 27, 1, 73--90.
[4]
Bai, Z., Day, D., Demmel, J., and Dongarra, J. 1997. A test matrix collection for non-Hermitian eigenvalue problems (release 1.0). Tech. rep. CS-97-355, Department of Computer Science, University of Tennessee. LAPACK Working Note 123.
[5]
Bean, N. G., Bright, L., Latouche, G., Pearce, C. E. M., Pollett, P. K., and Taylor, P. G. 1997. The quasi-stationary behavior of quasi-birth-and-death processes. Ann. Appl. Prob. 7, 1, 134--155.
[6]
Bellen, A., Guglielmi, N., and Ruehli, A. E. 1999. Methods for linear systems of circuit delay-differential equations of neutral type. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 46, 1, 212--216.
[7]
Betcke, T. 2008. Optimal scaling of generalized and polynomial eigenvalue problems. SIAM J. Matrix Anal. Appl. 30, 4, 1320--1338.
[8]
Betcke, T. and Kressner, D. 2011. Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra Appl. 435, 514--536.
[9]
Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., and Tisseur, F. 2011. NLEVP: A collection of nonlinear eigenvalue problems. Users’ guide. MIMS EPrint 2011.117, Manchester Institute for Mathematical Sciences.
[10]
Bongartz, I., Conn, A. R., Gould, N., and Toint, P. L. 1995. CUTE: Constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 1, 123--160.
[11]
Boulton, L. 2007. Non-variational approximation of discrete eigenvalues of self-adjoint operators. IMA J. Numer. Anal. 27, 1, 102--121.
[12]
Boulton, L. and Boussaid, N. 2010. Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials. LMS J. Comput. Math. 13, 10--32.
[13]
Boulton, L. and Levitin, M. 2007. On approximation of the eigenvalues of perturbed periodic Schrödinger operators. J. Phys. A: Math. Theor. 40, 9319--9329.
[14]
Bridges, T. J. and Morris, P. J. 1984. Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55, 437--460.
[15]
Bunse-Gerstner, A., Byers, R., Mehrmann, V., and Nichols, N. K. 1999. Feedback design for regularizing descriptor systems. Linear Algebra Appl. 299, 119--151.
[16]
Byers, R., He, C., and Mehrmann, V. 1998. Where is the nearest non-regular pencil? Linear Algebra Appl. 285, 81--105.
[17]
Byers, R., Mehrmann, V., and Xu, H. 2008. Trimmed linearizations for structured matrix polynomials. Linear Algebra Appl. 429, 2373--2400.
[18]
Chahlaoui, Y. and Van Dooren, P. M. 2002. A collection of benchmark examples for model reduction of linear time invariant dynamical systems. MIMS EPrint 2008.22, Manchester Institute for Mathematical Sciences.
[19]
Chahlaoui, Y. and Van Dooren, P. M. 2005. Benchmark examples for model reduction of linear time-invariant dynamical systems. In Dimension Reduction of Large-Scale Systems, P. Benner, V. Mehrmann, and D. C. Sorensen Eds., Lecture Notes in Computational Science and Engineering Series, vol. 45, Springer, 380--392.
[20]
Chaitin-Chatelin, F. and van Gijzen, M. B. 2006. Analysis of parameterized quadratic eigenvalue problems in computational acoustics with homotopic deviation theory. Numer. Linear Algebra Appl. 13, 487--512.
[21]
Chilwell, J. and Hodgkinson, I. 1984. Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Amer. A 1, 7, 742--753.
[22]
Chu, E. K.-W., Hwang, T.-M., Lin, W.-W., and Wu, C.-T. 2008. Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms. J. Comput. Appl. Math. 219, 1, 237--252.
[23]
Davis, T. A. University of Florida sparse matrix collection. http://www.cise.ufl.edu/research/sparse/matrices/.
[24]
Davis, T. A. and Hu, Y. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Software 38, 1, 1:1--1:25.
[25]
Dedieu, J.-P. and Tisseur, F. 2003. Perturbation theory for homogeneous polynomial eigenvalue problems. Linear Algebra Appl. 358, 71--94.
[26]
Dennis, Jr., J. E., Traub, J. F., and Weber, R. P. 1976. The algebraic theory of matrix polynomials. SIAM J. Numer. Anal. 13, 6, 831--845.
[27]
Donoho, D. L., Maleki, A., Rahman, M., Shahram, I. U., and Stodden, V. 2009. Reproducible research in computational harmonic analysis. Comput. Sci. Eng. 11, 1, 8--18.
[28]
Draijer, W., Steinbuch, M., and Bosgra, O. H. 1992. Adaptive control of the radial servo system of a compact disc player. Automatica 28, 3, 455--462.
[29]
Duff, I. S., Grimes, R. G., and Lewis, J. G. 1989. Sparse matrix test problems. ACM Trans. Math. Softw. 15, 1, 1--14.
[30]
Duffin, R. J. 1960. The Rayleigh-Ritz method for dissipative or gyroscopic systems. Q. Appl. Math. 18, 215--221.
[31]
Faßbender, H., Mackey, N., Mackey, D. S., and Schröder, C. 2008. Structured polynomial eigenproblems related to time-delay systems. Electron. Trans. Numer. Anal. 31, 306--330.
[32]
Feriani, A., Perotti, F., and Simoncini, V. 2000. Iterative system solvers for the frequency analysis of linear mechanical systems. Comput. Meth. Appl. Mech. Eng. 190, 1719--1739.
[33]
Frazer, R. A., Duncan, W. J., and Collar, A. R. 1938. Elementary Matrices and Some Applications to Dynamics and Differential Equations. Cambridge University Press. 1963 printing.
[34]
Gantmacher, F. R. 1959. The Theory of Matrices. Vol. 1, Chelsea, New York.
[35]
GNU Octave. http://www.octave.org.
[36]
Gohberg, I., Lancaster, P., and Rodman, L. 2009. Matrix Polynomials. SIAM, Philadelphia, PA.
[37]
Gotts, A. 2005. Report regarding model reduction, model compaction research project. Manuscript, University of Nottingham.
[38]
Gould, N. I. M., Orban, D., and Toint, P. L. 2003. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 4, 373--394.
[39]
Grammont, L., Higham, N. J., and Tisseur, F. 2011. A framework for analyzing nonlinear eigenproblems and parametrized linear systems. Linear Algebra Appl. 435, 3, 623--640.
[40]
Guo, C.-H. and Lin, W.-W. 2010. Solving a structured quadratic eigenvalue problem by a structure-preserving doubling algorithm. SIAM J. Matrix Anal. Appl. 31, 5, 2784--2801.
[41]
Guo, C.-H., Higham, N. J., and Tisseur, F. 2009a. Detecting and solving hyperbolic quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl. 30, 4, 1593--1613.
[42]
Guo, C.-H., Higham, N. J., and Tisseur, F. 2009b. An improved arc algorithm for detecting definite Hermitian pairs. SIAM J. Matrix Anal. Appl. 31, 3, 1131--1151.
[43]
Hadeler, K. P. 1967. Mehrparametrige und nichtlineare Eigenwertaufgaben. Arch. Rational Mech. Anal. 27, 4, 306--328.
[44]
Hammarling, S., Munro, C. J., and Tisseur, F. 2011. An algorithm for the complete solution of quadratic eigenvalue problems. MIMS EPrint 2011.86, Manchester Institute for Mathematical Sciences. ACM Trans. Math. Softw. (To appear).
[45]
Harari, I., Grosh, K., Hughes, T. J. R., Malhotra, M., Pinsky, P. M., Steward, J. R., and Thompson, L. L. 1996. Recent developments in finite element methods for structural acoustics. Arch. Comput. Meth. Eng. 3, 2-3, 131--309.
[46]
Higham, D. J. and Higham, N. J. 2005. MATLAB Guide 2nd Ed. SIAM, Philadelphia, PA.
[47]
Higham, N. J. 1991. Algorithm 694: A collection of test matrices in MATLAB. ACM Trans. Math. Softw. 17, 3, 289--305.
[48]
Higham, N. J. 2008. Functions of Matrices: Theory and Computation. SIAM, Philadelphia, PA.
[49]
Higham, N. J. and Kim, H.-M. 2000. Numerical analysis of a quadratic matrix equation. IMA J. Numer. Anal. 20, 4, 499--519.
[50]
Higham, N. J. and Tisseur, F. 2002. More on pseudospectra for polynomial eigenvalue problems and applications in control theory. Linear Algebra Appl. 351--352, 435--453.
[51]
Higham, N. J., Mackey, D. S., Tisseur, F., and Garvey, S. D. 2008. Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems. Int. J. Numer. Methods Eng. 73, 3, 344--360.
[52]
Higham, N. J., Mackey, D. S., and Tisseur, F. 2009. Definite matrix polynomials and their linearization by definite pencils. SIAM J. Matrix Anal. Appl. 31, 2, 478--502.
[53]
Hilliges, A. 2004. Numerische Lösung von quadratischen Eigenwertproblemen mit Anwendung in der Schienendynamik. Diplomarbeit, TU Berlin.
[54]
Hilliges, A., Mehl, C., and Mehrmann, V. 2004. On the solution of palindromic eigenvalue problems. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS’04), P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, and D. Knörzer Eds., http://www.mit.jyu.fi/eccomas2004/proceedings/proceed.html.
[55]
Huang, T.-M., Lin, W.-W., and Qian, J. 2008. Structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains. SIAM J. Matrix Anal. Appl. 30, 4, 1566--1592.
[56]
Huang, X., Bai, Z., and Su, Y. 2010. Nonlinear rank-one modification of the symmetric eigenvalue problem. J. Comput. Math. 28, 2, 218--234.
[57]
Ipsen, I. C. F. 2004. Accurate eigenvalues for fast trains. SIAM News 37, 9, 1--2.
[58]
Itoh, T. 1973. Damped vibration mode superposition method for dynamic response analysis. Earthquake Eng. Struct. Dyn. 2, 47--57.
[59]
Jarlebring, E. 2008. The spectrum of delay-differential equations: Numerical methods, stability and perturbation. Ph.D. thesis, TU Braunschweig, Institut Computational Mathematics, Carl-Friedrich-Gauß-Fakultät, 38023 Braunschweig, Germany.
[60]
Jarlebring, E. 2012. Convergence factors of Newton methods for nonlinear eigenvalue problems. Linear Algebra Appl. 436, 10, 3943--3953.
[61]
Jarlebring, E. and Michiels, W. 2010. Invariance properties in the root sensitivity of time-delay systems with double imaginary roots. Automatica 46, 1112--1115.
[62]
Jarlebring, E. and Michiels, W. 2011. Analyzing the convergence factor of residual inverse iteration. BIT 51, 4, 937--957.
[63]
Jarlebring, E., Michiels, W., and Meerbergen, K. 2010. A linear eigenvalue algorithm for the nonlinear eigenvalue problem. Rep. TW580, Katholieke Universiteit Leuven, Heverlee, Belgium.
[64]
Kaufman, L. 2006. Eigenvalue problems in fiber optic design. SIAM J. Matrix Anal. Appl. 28, 1, 105--117.
[65]
Kowalski, T. R. 2000. Extracting a few eigenpairs of symmetric indefinite matrix pencils. Ph.D. thesis, Department of Mathematics, University of Kentucky.
[66]
Kublanovskaya, V. N. 1999. Methods and algorithms of solving spectral problems for polynomial and rational matrices. J. Math. Sci. 96, 3, 3085--3287.
[67]
Kukelova, Z., Bujnak, M., and Pajdla, T. 2008. Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems. In Proceedings of the 19th British Machine Vision Conference (BMVC’08), M. Everingham, C. Needham, and R. Fraile Eds., Vol. 1, 565--574.
[68]
Kukelova, Z., Bujnak, M., and Pajdla, T. 2011. Polynomial eigenvalue solutions to minimal problems in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33, 12.
[69]
Lancaster, P. 1966. Lambda-Matrices and Vibrating Systems. Pergamon Press, Oxford, UK.
[70]
Lancaster, P. and Rózsa. 1996. The spectrum and stability of a vibrating rail supported by sleepers. Comput. Math. Appl. 31, 4/5, 201--213.
[71]
Lancaster, P. and Zaballa, I. 2009. Diagonalizable quadratic eigenvalue problems. Mech. Syst. Sig. Process. 23, 4, 1134--1144.
[72]
LeVeque, R. J. 2009. Python tools for reproducible research on hyperbolic problems. Comput. Sci. Eng. 11, 1, 19--27.
[73]
Liao, B.-S. 2007. Subspace projection methods for model order reduction and nonlinear eigenvalue computation. Ph.D. thesis, Department of Mathematics, University of California at Davis.
[74]
Mackey, D. S., Mackey, N., Mehl, C., and Mehrmann, V. 2006. Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 4, 1029--1051.
[75]
Manocha, D. 1994. Solving systems of polynomial equations. IEEE Comput. Graphics Appl. 14, 2, 46--55.
[76]
Markus, A. S. 1988. Introduction to the Spectral Theory of Polynomial Operator Pencils. American Mathematical Society, Providence, RI.
[77]
Matrix Market. http://math.nist.gov/MatrixMarket/.
[78]
Mehrmann, V. and Voss, H. 2004. Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods. GAMM-Mitteilungen (GAMM-Reports) 27, 121--152.
[79]
Mehrmann, V. and Watkins, D. 2002. Polynomial eigenvalue problems with Hamiltonian structure. Electron. Trans. Numer. Anal. 13, 106--118.
[80]
Meijaard, J. P., Papadopoulos, J. M., Ruina, A., and Schwab, A. L. 2007. Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proc. Roy. Soc. London Ser. A 463, 2084, 1955--1982.
[81]
Mesirov, J. P. 2010. Accessible reproducible research. Science 327, 415--416.
[82]
Mičušík, K. B. and Pajdla, T. 2003. Estimation of omnidirectional camera model from epipolar geometry. In Peoceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’03). IEEE.
[83]
Mičušík, K. B. and Pajdla, T. 2010. Simultaneous surveillance camera calibration and foot-head homology estimation from human detections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
[84]
Orszag, S. A. 1971. Accurate solution of the Orr--Sommerfeld stability equation. J. Fluid Mech. 50, 4, 689--703.
[85]
Petrác̆ek, J. and Singh, K. 2002. Determination of leaky modes in planar multilayer waveguides. IEEE Photonics Technol. Lett. 14, 6, 810--812.
[86]
Ruhe, A. 1973. Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 674--689.
[87]
Solov’ëv, S. I. 2006. Preconditioned iterative methods for a class of nonlinear eigenvalue problems. Linear Algebra Appl. 415, 210--229.
[88]
Stowell, D. 2010. Computing eigensolutions for singular Sturm-Liouville problems in photonics. Ph.D. thesis, AAI3404032, Southern Methodist University.
[89]
Stowell, D. and Tausch, J. 2010. Variational formulation for guided and leaky modes in multilayer dielectric waveguides. Comm. Comput. Phys. 7, 3, 564--579.
[90]
Su, Y. and Bai, Z. 2011. Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl. 32, 1, 201--216.
[91]
Taylor, A. and Higham, D. J. 2009. CONTEST: A controllable test matrix toolbox for MATLAB. ACM Trans. Math. Softw. 35, 4, 26:1--26:17.
[92]
Thaller, B. 1992. The Dirac Equation. Springer-Verlag, Berlin.
[93]
Tisseur, F. 2000. Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309, 339--361.
[94]
Tisseur, F. and Higham, N. J. 2001. Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Anal. Appl. 23, 1, 187--208.
[95]
Tisseur, F. and Meerbergen, K. 2001. The quadratic eigenvalue problem. SIAM Rev. 43, 2, 235--286.
[96]
Tisseur, F., Garvey, S. D., and Munro, C. 2011. Deflating quadratic matrix polynomials with structure preserving transformations. Linear Algebra Appl. 435, 3, 464--479.
[97]
Tokar, M. Z., Kelly, F. A., and Loozen, X. 2005. Role of thermal instabilities and anomalous transport in threshold of detachment and mulitfacetted asymmetric radiation from the edge (MARFE). Phys. Plasmas 12, 052510.
[98]
Van Dooren, P. M. and Dewilde, P. 1983. The eigenstructure of an arbitrary polynomial matrix: Computational aspects. Linear Algebra Appl. 50, 545--579.
[99]
Wei, S. and Kao, I. 2000. Vibration analysis of wire and frequency response in the modern wiresaw manufacturing process. J. Sound and Vib. 231, 5, 1383--1395.
[100]
Wortelboer, P. M. R., Steinbuch, M., and Bosgra, O. H. 1996. Closed-loop balanced reduction with application to a compact disc mechanism. In Selected Topics in Identification, Modeling and Control, Vol. 9, Delft University Press, 47--58.
[101]
Zhang, B. and Li, Y. F. 2008. A method for calibrating the central catadioptric camera via homographic matrix. In Proceedings of the IEEE International Conference on Information and Automation. 972--977.

Cited By

View all
  • (2025) Nonlinear eigenvalue algorithm for quasiparticle equations Physical Review B10.1103/PhysRevB.111.045137111:4Online publication date: 17-Jan-2025
  • (2025)Zero exclusion sectors for polynomials whose coefficients exhibit a +/-/+ sign patternProceedings of the American Mathematical Society10.1090/proc/17070153:3(1109-1120)Online publication date: 24-Jan-2025
  • (2025)Row or column completion of polynomial matrices of given degree IILinear Algebra and its Applications10.1016/j.laa.2024.12.004708(252-279)Online publication date: Mar-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 39, Issue 2
February 2013
151 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/2427023
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 February 2013
Accepted: 01 March 2012
Revised: 01 December 2011
Received: 01 November 2010
Published in TOMS Volume 39, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Hermitian
  2. MATLAB
  3. Octave
  4. Test problem
  5. benchmark
  6. elliptic
  7. even
  8. gyroscopic
  9. hyperbolic
  10. nonlinear eigenvalue problem
  11. odd
  12. overdamped
  13. palindromic
  14. polynomial eigenvalue problem
  15. proportionally-damped
  16. quadratic eigenvalue problem
  17. rational eigenvalue problem
  18. symmetric

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)156
  • Downloads (Last 6 weeks)20
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025) Nonlinear eigenvalue algorithm for quasiparticle equations Physical Review B10.1103/PhysRevB.111.045137111:4Online publication date: 17-Jan-2025
  • (2025)Zero exclusion sectors for polynomials whose coefficients exhibit a +/-/+ sign patternProceedings of the American Mathematical Society10.1090/proc/17070153:3(1109-1120)Online publication date: 24-Jan-2025
  • (2025)Row or column completion of polynomial matrices of given degree IILinear Algebra and its Applications10.1016/j.laa.2024.12.004708(252-279)Online publication date: Mar-2025
  • (2024)Highly Accurate Golden Section Search Algorithms and Fictitious Time Integration Method for Solving Nonlinear Eigenvalue ProblemsComputer Modeling in Engineering & Sciences10.32604/cmes.2023.030618139:2(1317-1335)Online publication date: 2024
  • (2024)Row or Column Completion of Polynomial Matrices of Given DegreeSIAM Journal on Matrix Analysis and Applications10.1137/23M156454745:1(478-503)Online publication date: 7-Feb-2024
  • (2024)Randomized Sketching of Nonlinear Eigenvalue ProblemsSIAM Journal on Scientific Computing10.1137/22M153656X46:5(A3022-A3043)Online publication date: 24-Sep-2024
  • (2024)On singular pencils with commuting coefficientsLinear and Multilinear Algebra10.1080/03081087.2024.2435409(1-20)Online publication date: 17-Dec-2024
  • (2024)Approximating the closest structured singular matrix polynomialLinear and Multilinear Algebra10.1080/03081087.2024.2376561(1-29)Online publication date: 9-Jul-2024
  • (2024)Match-based solution of general parametric eigenvalue problemsJournal of Computational Physics10.1016/j.jcp.2024.113384519:COnline publication date: 15-Dec-2024
  • (2024)Fiedler Linearizations of Rectangular Rational Matrix FunctionsBulletin of the Iranian Mathematical Society10.1007/s41980-023-00843-y50:1Online publication date: 12-Jan-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media