skip to main content
research-article

MORPHEUS: A heterogeneous dynamically reconfigurable platform for designing highly complex embedded systems

Authors Info & Claims
Published:08 April 2013Publication History
Skip Abstract Section

Abstract

Recently, system designers are facing the challenge of developing systems that have diverse features, are more complex and more powerful, with less power consumption and reduced time to market. These contradictory constraints have forced technology providers to pursue design solutions that will allow design teams to meet the above design targets. In that respect, this paper introduces an innovative technology platform, called MORPHEUS, which intents to provide complete design framework for dealing with the aforementioned challenges. MORPHEUS consists of a state of the art architecture that encompasses heterogeneous reconfigurable accelerators for implementing on the same hardware architecture applications with varying characteristics and a tool chain that, through a software oriented approach, eases the implementation of highly complex applications with heterogeneous characteristics. The proposed approach has been tested and evaluated through state of the art cases studies borrowed from complementary application domains.

References

  1. Bell, S., et al. 2008. TILE64 processor: A 64-core SoC with mesh interconnect. Intl. Conference on Solid-State Circuits (ISSCC). 88--89.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bertin, P., Roncin, D., and Vuillemin J. 1989. Introduction to Programmable Active Memories. Prentice Hall, 300--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bonnot, P., Lemonnier, F., Edelin, G., Gaillat, G., Ruch, O., and Gauget, P. 2008. Definition and SIMD implementation of a multi-processing architecture approach on FPGA. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE '08). 610--615. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cambonie, J., Guérin, S., Keryell, R., Lagadec, L., Pottier, B., Sentieys, O., Weber, B., and Yazdani, S. 2004. Compiler and system techniques for soc distributed reconfigurable accelerators. In Proceedings of the 4th International Workshop on Synthesis, Architectures, Modeling and Simulation (SAMOS). 293--302.Google ScholarGoogle Scholar
  5. Campi, F., Deledda, A., Pizzotti, M., Ciccarelli, L., Mucci, C., Lodi, A., Vanzolini, L., and Vitkovski, A. 2007. Dynamically adaptive DSP for heterogeneous reconfigurable platforms. Proceedings of the Design Automation and Test in Europe (DATE). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Campi, F., Toma, M., Lodi, A., Cappelli, A., Canegallo, R., and Guerrieri, R. 2003. A VLIW processor with reconfigurable instruction set for embedded applications. Proceedings of the International Solid State Circuits Conference.Google ScholarGoogle Scholar
  7. CRITICALBLUE, 2005. Boosting software processing performance with coprocessor synthesis. White paper.Google ScholarGoogle Scholar
  8. Coppola, M., Locatelli, R., Maruccia, G., Pieralisi, L., and Scandurra, A. 2004. Spidergron: A novel on-chip communication network. Proceedings of the IEEE Symposium on System on Chip (SoC'09).Google ScholarGoogle Scholar
  9. Cappelli, A., Lodi, A., Mucci, C., Toma, M., and Campi, F. 2004. A dataflow control unit for C-to-configurable pipelines compilation flow. Proceedings of the 12th Annual Symposium on Field-Programmable Custom Computing Machines (FCCM). 332--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Compton, K. and Hauck, S. 2002. Reconfigurable computing: A survey of systems and software. ACM Computing Surveys 23, 2, 171--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. DeHon, A. The density advantage of configurable computing. IEEE Computer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. DeHon, A., et al. 2006. Stream computations organized for reconfigurable execution. Microprocessors and microsystems 30, 6, 334--354, Special Issue on FPGAs.Google ScholarGoogle Scholar
  13. Do Carmo, L., A., Heithecker, S., Rüffer, P., Ernst, R., Rückert, H., Wischermann, G., Gebel, K., Fach, R., Hunther, W., Eichner, S., and Scheller, G. 2006. A reconfigurable hardware/software platform for computation intensive high-resolution real-time digital film applications. In Proceedings of Design, Automation and Test in Europe (DATE). 194--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dutta, S., Jensen, R., and Rieckmann, A. 2001. Viper: A multiprocessor SOC for advanced set-top box and digital TV systems. IEEE Design & Test of Computers 16, 5, 21--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Estrin, G. 1960. Organization of computer systems-the fixed plus variable structure computer. Proceedings of Western Joint Computer Conference. 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Eichner, S., Scheller, G., Wessely, U., Rückert, H., and Hedtke, R. 2005. Motion compensated spatial-temporal reduction of film grain noise in the wavelet domain. In Proceedings of the SMPTE Technical Conference.Google ScholarGoogle Scholar
  17. Faraboschi, Brown, Fisher, Desoli. 2000. Lx: A technology platform for customizable VLIW embedded processing. Proceedings of the 27th Annual International Symposium of Computer Architectures. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Goldstein, S. et al. 1999. PipeRench: A coprocessor for streaming multimedia acceleration. Proceedings of the 26th Int'l Symp. Computer Architecture (ISCA'99). 28--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hartenstein, R. 2001. A decade of reconfigurable computing: A visionary retrospective. Proceedings of the Design, Automation and Test in Europe (DATE '01). 642--649. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hartenstein, R. 2003. Rekonfigurable computing: Paradigmen-Wechsel erschüttern die fundamente der informatik. Proceedings of the Anniversary Colloquium at Prof. Glesner's 60s Birthday.Google ScholarGoogle Scholar
  21. Hauser, Wawrzinek. 1997. Garp: A MIPS processor with reconfigurable coprocessor. Proceedings of the Symposium on Field Programmable Custom Computing Machines. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kuehnle, M. et al. 2008. An interconnect strategy for a heterogeneous, reconfigurable SoC. IEEE Design & Test of Computers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Le Gall D. and Tabatabai, A. 1988. Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP'88). 761--764.Google ScholarGoogle Scholar
  24. Lenormand, E. and Edelin, G. 2003. An industrial perspective: Pragmatic high-end signal processing environment at Thales. In Proceedings of the 3rd International Workshop on Synthesis, Architectures, Modeling and Simulation (SAMOS).Google ScholarGoogle Scholar
  25. Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. 2008. NVIDIA Tesla: A unified graphics and computing architecture. IEEE Micro 28, 2, 39--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Moscu Panainte, E., Bertels, K., and Vassiliadis, S. 2004. The PowerPC Backend Molen Compiler. In Proceedings of 14th International Conference on Fleld-Programmable Logic and Applications (FPL). 434--443.Google ScholarGoogle Scholar
  27. Moscu Panainte, E., Bertels, K., and Vassiliadis, S. 2005a. FPGA-area allocation for partial run-time reconfiguration. Proceedings of ProRISC. 415--420.Google ScholarGoogle Scholar
  28. Moscu Panainte, E., Bertels, K., and Vassiliadis, S. 2005b. Instruction scheduling for dynamic hardware configurations. In Proceedings of Design, Automation and Test in Europe (DATE '05). 100--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Moscu Panainte, E., Bertels, K., and Vassiliadis, S. 2007. The MOLEN Compiler for reconfigurable processors. ACM Transactions in Embedded Computing Systems 6, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mucci, C., Chiesa, C., Lodi, A., Toma, M., and Campi, F. 2003. A C-based algorithm development flow for a reconfigurable processor architecture. In Proceedings of the International Symposium on Systems-on-Chip (SOC'03). 69--73.Google ScholarGoogle Scholar
  31. Nomadik. 2007. Nomadik®: A mobile multimedia application processor platform. Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC'07). 749--750. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. OMAP. http://www.ti.com.Google ScholarGoogle Scholar
  33. PACT XPP Technologies. 2005. PACT Software Design System XPP-IIb (PSDS XPP-IIb) - Programming Tutorial. Version 3.2, November 2005.Google ScholarGoogle Scholar
  34. Radunovic, B. 1999. An overview of advances in reconfigurable computing systems. Proceedings of the 32nd Hawaii International Conference on System Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rossi, D., Campi, F., Deledda, A., Spolzino, S., and Pucillo, S. 2009. A heterogeneous digital signal processor implementation for dynamically reconfigurable computing. IEEE Custom Integrated Circuits Conference (CICC).Google ScholarGoogle Scholar
  36. Sahlbach, H., Putzke-Röming, W., Whitty, S. and Ernst, R. 2009. Real-time digital film processing. In Dynamic System Reconfiguration in Heterogeneous Platforms - The MORPHEUS Approach. Lecture Notes in Electrical Engineering, vol. 40, Springer, 185--193.Google ScholarGoogle ScholarCross RefCross Ref
  37. Sanz, C., Garrido, M. J., and Meneses, J. M. 1996. VLSI architecture for motion estimation using the block-matching algorithm. In Proceedings of the EDTC. 310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Singh, H. et al. 2000. MorphoSys: An integrated reconfigurable system for data-parallel and computation-intensive applications. IEEE Trans. Computers 49, 5, 465--481. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Thomas, A. and Becker, J. 2004. Dynamic adaptive routing techniques in multigrain dynamic reconfigurable hardware architectures. Proceedings of the Field-Programmable Logic and Its Applications (FPL'04).Google ScholarGoogle Scholar
  40. Truong, D. N., Cheng, W. H., Mohsenin, T., Zhiyi, Y., Jacobson, A. T., Landge, G., Meeuwsen, M. J., Watnik, C., Tran, A. T., Zhibin, X., Work, E. W., Webb, J. W., Mejia, P. V., and Baas, B. M. 2009. A 167-processor computational platform in 65 nm CMOS. IEEE Journal of Solid-State Circuits 44, 4, 1130--1144.Google ScholarGoogle ScholarCross RefCross Ref
  41. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., and Panainte, E. 2004. The MOLEN polymorphic processor. IEEE Trans. Comput. 53, 11, 1363--1375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Vorbach, M. and Becker, J. 2003. Reconfigurable processor architectures for mobile phones. Proceedings of Parallel and Distributed Processing Symposium. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Whitty, S. and Ernst, R. 2008. A bandwidth optimized SDRAM controller for the MORPHEUS reconfigurable architecture. In Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS).Google ScholarGoogle Scholar
  44. Whitty, S., Sahlbach, H., Putzke-Röming, W., and Ernst, R. 2009. Mapping of a film grain removal algorithm to a heterogeneous reconfigurable architecture. In Proceedings of Design, Automation and Test in Europe (DATE). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Whitty, S., Sahlbach, H., Hurlburt, B., Putzke-Röming, W., and Ernst, R. 2010. Application-specific memory performance of a heterogeneous reconfigurable architecture. In Proceedings of Design, Automation and Test in Europe (DATE). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wolf, M. E. and Lam, M. S. 1991. A data locality optimizing algorithm. Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'91). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. MORPHEUS: A heterogeneous dynamically reconfigurable platform for designing highly complex embedded systems

                  Recommendations

                  Comments

                  Login options

                  Check if you have access through your login credentials or your institution to get full access on this article.

                  Sign in

                  Full Access

                  • Published in

                    cover image ACM Transactions on Embedded Computing Systems
                    ACM Transactions on Embedded Computing Systems  Volume 12, Issue 3
                    March 2013
                    463 pages
                    ISSN:1539-9087
                    EISSN:1558-3465
                    DOI:10.1145/2442116
                    Issue’s Table of Contents

                    Copyright © 2013 ACM

                    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                    Publisher

                    Association for Computing Machinery

                    New York, NY, United States

                    Publication History

                    • Published: 8 April 2013
                    • Accepted: 1 September 2011
                    • Revised: 1 June 2011
                    • Received: 1 October 2010
                    Published in tecs Volume 12, Issue 3

                    Permissions

                    Request permissions about this article.

                    Request Permissions

                    Check for updates

                    Qualifiers

                    • research-article
                    • Research
                    • Refereed

                  PDF Format

                  View or Download as a PDF file.

                  PDF

                  eReader

                  View online with eReader.

                  eReader