skip to main content
10.1145/2449396.2449441acmconferencesArticle/Chapter ViewAbstractPublication PagesiuiConference Proceedingsconference-collections
research-article

Optimizing temporal topic segmentation for intelligent text visualization

Published: 19 March 2013 Publication History

Abstract

We are building a topic-based, interactive visual analytic tool that aids users in analyzing large collections of text. To help users quickly discover content evolution and significant content transitions within a topic over time, here we present a novel, constraint-based approach to temporal topic segmentation. Our solution splits a discovered topic into multiple linear, non-overlapping sub-topics along a timeline by satisfying a diverse set of semantic, temporal, and visualization constraints simultaneously. For each derived sub-topic, our solution also automatically selects a set of representative keywords to summarize the main content of the sub-topic. Our extensive evaluation, including a crowd-sourced user study, demonstrates the effectiveness of our method over an existing baseline.

References

[1]
http://www.crowdflower.com
[2]
Alonso, O., Gertz, M. and Baeza-Yates, R. 2009. Clustering and Exploring Search Results using Timeline Constructions. CIKM'09, 97--106.
[3]
Andrzejewski, D., Zhu, X., Craven, M., and Recht, B. 2011. A Framework for Incorporating General Domain Knowledge into Latent Dirichlet Allocation using First-Order Logic. IJCAI'2011, 1171--1177.
[4]
Andrzejewski, D., Zhu, X., and Craven, M. 2009. Incorporating Domain Knowledge into Topic Modeling via Dirichlet Forest Priors. ICML, 4.
[5]
Banerjee, S. and Rudnicky, A. 2006. A TextTiling Based Approach to Topic Boundary Detection in Meetings. In proceedings of the Interspeech. pp 57--60.
[6]
Basu, S., Bilenko, M. and Mooney, R. 2004. A Probabilistic Framework for Semi-Supervised Clustering. SIGKDD'04, 59--68.
[7]
Blei, D., Ng, A. and Jordan, M. 2003. Latent Dirichlet Allocation. J. of Mach. Learn. Res., 3:993--1022.
[8]
Blei, D., Lafferty, J. 2006. Dynamic topic models. ICML'06, 113--120.
[9]
Basu, S., Banerjee, A., and Mooney, R. J. 2002. Semisupervised clustering by seeding. ICML'02, 27--34.
[10]
Brants, T., Chen, F. and Tsochantaridis, I., 2002 Topic-based document segmentation with probabilistic latent semantic analysis, CIKM' 02, 211--218.
[11]
Carenini, G., Ng, R. Pauls, A. 2008: Interactive multimedia summaries of evaluative text. IUI'08, 124--131.
[12]
Chi, Y., Song, X., Zhou, D., Hino, K. and Tseng, B. 2007. Evolutionary spectral clustering by incorporating temporal smoothness. SIGKDD'07, 153--162.
[13]
Chu, C.-S. J. 1995. Time Series Segmentation: A Sliding Window Approach. Information Sciences, 85 (1):147--173.
[14]
Chuang, J., Ramage, D., Manning, C., and Heer, J. 2012. Interpretation and trust: designing model-driven visualizations for text analysis. CHI'12, 443--452.
[15]
Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Qu, H., and Tong, X. Textflow: Towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 17, 12 (2011), 2412--2421.
[16]
Dhillon, I., Mallela, S. and Modha, D. 2003. Information Theoretic Co-Clustering. SIGKDD'03, 89--98.
[17]
Dredze, M., Wallach, H., Puller, D., and Pereira, F. 2008. Generating Summary Keywords for Emails Using Topics. IUI'09, 199--206.
[18]
Galley, M., McKeown, K., Fosler-Lussier, E. and Jing., H. 2003. Discourse Segmentation of Multi-party Conversation. ACL'03, 562--569.
[19]
Hearst, M. 1994. Multi-paragraph segmentation of expository text. ACL'94, 9--16.
[20]
Hearst, M. 1997. TextTiling: Segmenting text into multi-paragraph subtopic passages. Computational Linguistics, 23(1):33--64.
[21]
Jeong, M. and Titov, I. 2010 Multi-Document Topic Segmentation. CIKM'2010, 1119--1128.
[22]
Liu, S., Zhou, M., Pan, S., Qian, W., Cai, W., Lian, X. 2009. Interactive Topic-based Visual Text Summarization and Analysis, CIKM'09, 543--552.
[23]
Misra, H., Yvon, F., Jose, J. and Cappe, O. 2009. Text segmentation via topic modeling: an analytical study. CIKM '09, 1553--1556.
[24]
Ramage, D., Manning, C. and Dumais, S. 2011. Partially Labeled Topic Models for Interpretable Text Mining. SIGKDD'11, 457--465.
[25]
Sanampudi, S. and Kumari, G. Temporal reasoning in natural language processing: a survey. Intl. J. of Comp. Apps. 1(4): 53--57, 2010.
[26]
Schrier, E., Dontcheva, M., Jacobs, C., Wade, G. and Salesin, D. IUI '08, Adaptive layout for dynamically aggregated documents. 99--108.
[27]
Song, Y., Pan, S., Liu, S., Wei, F., Zhou, M. and Qian, W. 2010. Constrained co-clustering for textual documents. AAAI'2010, 581--586.
[28]
Sun, B., Mitra, P., Giles, C., Yen, J. and Zha, H., 2007. Topic segmentation with shared topic detection and alignment of multiple documents. SIGIR'07, 199--206.
[29]
Tür, G., Stolcke, A., Hakkani-Tür, D. and Shriberg, E. 2001. Integrating prosodic and lexical cues for automatic topic segmentation, Computational Linguistics, 27(1), 31--57.
[30]
Wang, F., Tong, H. and Lin, C. 2011. Towards Evolutionary Nonnegative Matrix Factorization. AAAI'11, 501--566.
[31]
Wang, C., Blei, D. and Heckerman, D. 2008. Continuous Time Dynamic Topic Models. Proc. on Uncertainty in AI, 579--586.
[32]
Wang, F., Li, T. and Zhang, C. 2008. Semi-Supervised Clustering via Matrix Factorization. SIAM'08, 1--12.
[33]
Wang, X. and McCallum, A. 2006. Topics over time: a Non-Markov Continuous-Time Model of Topical Trends. SIGKDD'06, 424--433.

Cited By

View all
  • (2021)Email Clustering & Generating Email Templates Based on Their TopicsProceedings of the 2021 5th International Conference on Information System and Data Mining10.1145/3471287.3471298(96-103)Online publication date: 27-May-2021
  • (2019)Bridging Text Visualization and Mining: A Task-Driven SurveyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.283434125:7(2482-2504)Online publication date: 1-Jul-2019
  • (2017)Topic Model Visualization with IPythonProceedings of the 20th Conference of Open Innovations Association FRUCT10.23919/FRUCT.2017.8071303(131-137)Online publication date: 10-Apr-2017
  • Show More Cited By

Index Terms

  1. Optimizing temporal topic segmentation for intelligent text visualization

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    IUI '13: Proceedings of the 2013 international conference on Intelligent user interfaces
    March 2013
    470 pages
    ISBN:9781450319652
    DOI:10.1145/2449396
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 March 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. constrained clustering
    2. text visualization
    3. topic-based

    Qualifiers

    • Research-article

    Conference

    IUI '13
    Sponsor:
    IUI '13: 18th International Conference on Intelligent User Interfaces
    March 19 - 22, 2013
    California, Santa Monica, USA

    Acceptance Rates

    IUI '13 Paper Acceptance Rate 43 of 192 submissions, 22%;
    Overall Acceptance Rate 746 of 2,811 submissions, 27%

    Upcoming Conference

    IUI '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)14
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Email Clustering & Generating Email Templates Based on Their TopicsProceedings of the 2021 5th International Conference on Information System and Data Mining10.1145/3471287.3471298(96-103)Online publication date: 27-May-2021
    • (2019)Bridging Text Visualization and Mining: A Task-Driven SurveyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.283434125:7(2482-2504)Online publication date: 1-Jul-2019
    • (2017)Topic Model Visualization with IPythonProceedings of the 20th Conference of Open Innovations Association FRUCT10.23919/FRUCT.2017.8071303(131-137)Online publication date: 10-Apr-2017
    • (2017)A Survey on Visual Analytics for the Spatio-Temporal Exploration of Microblogging ContentJournal of Geovisualization and Spatial Analysis10.1007/s41651-017-0002-61:1-2Online publication date: 8-Jun-2017
    • (2016)The Stability and Usability of Statistical Topic ModelsACM Transactions on Interactive Intelligent Systems10.1145/29540026:2(1-23)Online publication date: 20-Jul-2016
    • (2016)Interactive Topic Modeling for Exploring Asynchronous Online ConversationsACM Transactions on Interactive Intelligent Systems10.1145/28541586:1(1-24)Online publication date: 22-Feb-2016
    • (2016)Understanding Mass Interactions in Online Sports ViewingACM Transactions on Computer-Human Interaction10.1145/284394123:1(1-27)Online publication date: 29-Jan-2016
    • (2015)User-directed Non-Disruptive Topic Model Update for Effective Exploration of Dynamic ContentProceedings of the 20th International Conference on Intelligent User Interfaces10.1145/2678025.2701396(158-168)Online publication date: 18-Mar-2015
    • (2015)ConVisITProceedings of the 20th International Conference on Intelligent User Interfaces10.1145/2678025.2701370(169-180)Online publication date: 18-Mar-2015
    • (2014)PEARL: An interactive visual analytic tool for understanding personal emotion style derived from social media2014 IEEE Conference on Visual Analytics Science and Technology (VAST)10.1109/VAST.2014.7042496(203-212)Online publication date: Oct-2014

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media