skip to main content
10.1145/2461328.2461351acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

A simulink hybrid heart model for quantitative verification of cardiac pacemakers

Published:08 April 2013Publication History

ABSTRACT

We develop a novel hybrid heart model in Simulink that is suitable for quantitative verification of implantable cardiac pacemakers. The heart model is formulated at the level of cardiac cells, can be adapted to patient data, and incorporates stochasticity. It is inspired by the timed and hybrid automata network models of Jiang et al and Ye et al, where probabilistic behaviour is not considered. In contrast to our earlier work, we work directly with action potential signals that the pacemaker sensor inputs from a specific cell, rather than ECG signals. We validate the model by demonstrating that its composition with a pacemaker model can be used to check safety properties by means of approximate probabilistic verification.

References

  1. T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantitative Verification of Implantable Cardiac Pacemakers. RTSS, pp. 263--272. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. G. Clifford, S. Nemati, and R. Sameni. An Artificial Vector Model for Generating Abnormal Electrocardiographic Rhythms. Physiological Measurements, 31(5):595--609, May 2010.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Gomes and M. Oliveira. Formal Specification of a Cardiac Pacing System. FM ’09, pp. 692--707, 2009. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Z. Jiang, M. Pajic, A. Connolly, S. Dixit, and R. Mangharam. Real-Time Heart model for implantable cardiac device validation and verification. ECRTS, pp. 239--248. IEEE, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Z. Jiang, M. Pajic, and R. Mangharam. Cyber-Physical Modeling of Implantable Cardiac Medical Devices. Proceedings of the IEEE, 100(1):122--137, 2012.Google ScholarGoogle Scholar
  6. Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and Verification of a Dual Chamber Implantable Pacemaker. TACAS, pp. 188--203, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Kwiatkowska, G. Norman and D. Parker.PRISM 4.0: Verification of Probabilistic Real-time Systems CAV'11, pp. 585--591, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. L. Jones, Y. Zhang, and R. P. Jetley. Safety-assured development of the gpca infusion pump software. EMSOFT'11, pp. 155--164. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell, 1997.Google ScholarGoogle Scholar
  10. R. Lassaigne and S. Peyronnet. Probabilistic Verification and Approximation. Ann. Pure Appl. Logic, 152(1--3):122--131, 2008.Google ScholarGoogle Scholar
  11. A. Legay, B. Delahaye, and S. Bensalem. Statistical Model Checking: An Overview. RV'10, LNCS 6418, pp. 122--135. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. T. Luu, M. C. Zheng, and Q. T. Tho. Modeling and Verification of Safety Critical Systems: A Case Study on Pacemaker. SSIRI, pp. 23--32. IEEE, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. Macedo, P. Larsen, and J. Fitzgerald. Incremental development of a distributed real-time model of a cardiac pacing system using vdm. FM'8, LNCS 5014, pp. 181--197. 2008.% Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. % J. F. Manwell and J. G. McGowan. Lead acid battery storage model for hybrid energy systems. Solar Energy, 50(5):399--405, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  15. P. McSharry, G. Clifford, L. Tarassenko, and L. Smith. A Dynamical Model for Generating Synthetic Electrocardiogram Signals. Biomedical Engineering, IEEE Transactions on, 50(3):289 --294, 2003.Google ScholarGoogle Scholar
  16. D. Méry and N. K. Singh. Pacemaker's Functional Behaviors in Event-B. Rapport de recherche, 2009.Google ScholarGoogle Scholar
  17. S. Sankaranarayanan and G. E. Fainekos. Simulating Insulin Infusion Pump Risks by In-Silico Modeling of the Insulin-Glucose Regulatory System. CMSB, pp. 322--341, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  18. P. Ye, E. Entcheva, R. Grosu, and S. A. Smolka. Efficient Modeling of Excitable Cells Using Hybrid Automata. CMSB, 2005.Google ScholarGoogle Scholar

Index Terms

  1. A simulink hybrid heart model for quantitative verification of cardiac pacemakers

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      HSCC '13: Proceedings of the 16th international conference on Hybrid systems: computation and control
      April 2013
      378 pages
      ISBN:9781450315678
      DOI:10.1145/2461328

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 April 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      HSCC '13 Paper Acceptance Rate40of86submissions,47%Overall Acceptance Rate153of373submissions,41%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader