skip to main content
research-article

Content-adaptive lenticular prints

Published: 21 July 2013 Publication History

Abstract

Lenticular prints are a popular medium for producing automultiscopic glasses-free 3D images. The light field emitted by such prints has a fixed spatial and angular resolution. We increase both perceived angular and spatial resolution by modifying the lenslet array to better match the content of a given light field. Our optimization algorithm analyzes the input light field and computes an optimal lenslet size, shape, and arrangement that best matches the input light field given a set of output parameters. The resulting emitted light field shows higher detail and smoother motion parallax compared to fixed-size lens arrays. We demonstrate our technique using rendered simulations and by 3D printing lens arrays, and we validate our approach in simulation with a user study.

Supplementary Material

ZIP File (a133-tompkin.zip)
Supplemental material.
MP4 File (tp148.mp4)

References

[1]
Berkel, C. V. 1999. Image preparation for 3D-LCD. Proc. SPIE Stereoscopic Displays and Virtual Reality Systems 3639, 84--91.
[2]
Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In Proc. SIGGRAPH, 307--318.
[3]
Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 1244--1250.
[4]
Cox, W. R., Chen, T., and Hayes, D. J. 2001. Micro-optics fabrication by ink-jet printers. Optics and Photonics News 12, 6, 32--35.
[5]
Cruz-Campa, J. L., Okandan, M. O., Busse, M. L., and Nielson, G. N. 2010. Microlens rapid prototyping technique with capability for wide variation in lens diameter and focal length. Microelectronic Engineering 87, 11.
[6]
Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 1115--1126.
[7]
Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6d reflectance field displays. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 58:1--58:8.
[8]
Gooch, A. A., Olsen, S. C., Tumblin, J., and Gooch, B. 2005. Color2gray: salience-preserving color removal. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 634--639.
[9]
Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 33:1--33:10.
[10]
Hardy, G. H., and Ramanujan, S. 1918. Asymptotic formulae in combinatorial analysis. In Proc. London Math. Soc., vol. 17, 75--115.
[11]
Holroyd, M., Baran, I., Lawrence, J., and Matusik, W. 2011. Computing and fabricating multilayer models. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6, 187:1--187:8.
[12]
Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereoscopic 3-D display using LCD-generated parallax barrier. Electronics and Communications in Japan 76, 7, 77--84.
[13]
Ives, F., 1903. Parallax stereogram and process for making same. U.S. Patent No. 725,567.
[14]
Jain, A., and Konrad, J. 2007. Crosstalk in automultiscopic 3-D displays: blessing in disguise? Proc. SPIE Stereoscopic Displays and Virtual Reality Systems 6490, 649012.
[15]
Jang, J.-S., and Javidi, B. 2002. Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Optics Letters 27, 5, 324--326.
[16]
Jang, J.-S., and Javidi, B. 2003. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes. Optics Letters 28, 1924--1926.
[17]
Johnson, R. B., and Jacobsen, G. A. 2005. Advances in lenticular lens arrays for visual display. In Proc. SPIE 5874.
[18]
Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360 light field display. ACM Trans. Graph. 26, 3, 40:1--40:10.
[19]
Kao, Y.-Y., Huang, Y.-P., Yang, K.-X., Chao, P. C.-P., Tsai, C.-C., and Mo, C.-N. 2009. An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array. SID Symposium Digest of Technical Papers 40, 111--114.
[20]
Kim, Y., Park, J.-H., Min, S.-W., Jung, S., Choi, H., and Lee, B. 2005. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array. Applied Optics 44, 546--552.
[21]
Kim, Y., Kim, J., Kang, J.-M., Jung, J.-H., Choi, H., and Lee, B. 2007. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express 15, 26, 18253--18267.
[22]
Kim, Y., Hong, K., and Lee, B. 2010. Recent researches based on integral imaging display method. 3D Research 1, 17--27.
[23]
Kim, S.-C., Kim, C.-K., and Kim, E.-S. 2011. Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique. 3D Research 2, 2, 6.
[24]
Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., and Gross, M. 2013. Scene reconstruction from high spatio-angular resolution light fields. To appear ACM Trans. Graph. (Proc. SIGGRAPH).
[25]
Kweon, G.-I., and Kim, C.-H. 2007. Aspherical lens design by using a numerical analysis. Journal of the Korean Physical Society 51, 1, 93--103.
[26]
Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 6, 163:1--163:10.
[27]
Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 6 (Dec.), 186:1--186:10.
[28]
Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 55:1--55:12.
[29]
Lippmann, G. M. 1908. La photographie integrale. Comptes-Rendus 146, 446--451.
[30]
Lueder, E. 2012. 3D Displays. Wiley.
[31]
Nashel, A., and Fuchs, H. 2009. Random Hole Display: A non-uniform barrier autostereoscopic display. In 3DTV Conference: The True Vision -- Capture, Transmission and Display of 3D Video, 1--4.
[32]
Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum 30, 2, 503--511.
[33]
Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., and Jarosz, W. 2012. The magic lens: Refractive steganography. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6, 186:1--186:10.
[34]
Park, J.-H., Kim, J., Kim, Y., and Lee, B. 2005. Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging. Optics Express 13, 1875--1884.
[35]
Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In Proc. of SIGGRAPH, 319--326.
[36]
Peterka, T., Kooima, R. L., Sandin, D. J., Johnson, A., Leigh, J., and DeFanti, T. A. 2008. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE T. VIS. COMPUT. GR. 14, 3, 487--499.
[37]
Ramachandra, V., Hirakawa, K., Zwicker, M., and Nguyen, T. 2011. Spatio-angular prefiltering for multiview 3D displays. IEEE T. VIS. COMPUT. GR. 17, 5, 642--654.
[38]
Said, A., and Talvala, E.-V. 2009. Spatial-angular analysis of displays for reproduction of light fields. Proc. SPIE 7237.
[39]
Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-guided resolution enhancement in projectors via optical pixel sharing. ACM Trans. Graph. 31, 4 (July), 79:1--79:122.
[40]
Schnars, U., and Jüpter, W. 2005. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer.
[41]
Smith, W. J. 2007. Modern optical engineering. SPIE Press.
[42]
Sun, H.-b., and Kawata, S., 2004. Two-photon photopolymerization and 3d lithographic microfabrication.
[43]
Takahashi, H., Fujinami, H., and Yamada, K. 2006. Wide-viewing-angle three-dimensional display system using hoe lens array. Proc. SPIE 6055, 60551C-1--60551C-9.
[44]
Ueda, K., Koike, T., Takahashi, K., and Naemura, T. 2008. Adaptive integral photography imaging with variable-focus lens array. Proc. SPIE 6803.
[45]
Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 95:1--95:12.
[46]
Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4, 80:1--80:11.
[47]
Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I. 2012. Printed optics: 3d printing of embedded optical elements for interactive devices. In ACM Symposium on User Interface Software and Technology, 589--598.
[48]
Wu, M.-H., Park, C., and Whitesides, G. 2002. Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography. Langmuir 18, 24.
[49]
Zebra Imaging, 2013. ZScape® digital holographic prints. http://www.zebraimaging.com.
[50]
Zwicker, W., Matusik, W., Dur, F., Pfister, H., Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering, 73--82.
[51]
Zwicker, M., Vetro, A., Yea, S., Matusik, W., Pfister, H., and Durand, F. 2007. Resampling, antialiasing, and compression in multiview 3-D displays. IEEE Signal Processing Magazine 24, 6 (Nov.), 88--96.

Cited By

View all
  • (2021)Lenticular Objects: 3D Printed Objects with Lenticular Lens Surfaces That Can Change their Appearance Depending on the ViewpointThe 34th Annual ACM Symposium on User Interface Software and Technology10.1145/3472749.3474815(1184-1196)Online publication date: 10-Oct-2021
  • (2020)Fabrication of moiré on curved surfacesOptics Express10.1364/OE.39384328:13(19413)Online publication date: 16-Jun-2020
  • (2020)Neural light field 3D printingACM Transactions on Graphics10.1145/3414685.341787939:6(1-12)Online publication date: 27-Nov-2020
  • Show More Cited By

Index Terms

  1. Content-adaptive lenticular prints

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 32, Issue 4
    July 2013
    1215 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2461912
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 July 2013
    Published in TOG Volume 32, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3D printing
    2. lenticular displays

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)40
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 28 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Lenticular Objects: 3D Printed Objects with Lenticular Lens Surfaces That Can Change their Appearance Depending on the ViewpointThe 34th Annual ACM Symposium on User Interface Software and Technology10.1145/3472749.3474815(1184-1196)Online publication date: 10-Oct-2021
    • (2020)Fabrication of moiré on curved surfacesOptics Express10.1364/OE.39384328:13(19413)Online publication date: 16-Jun-2020
    • (2020)Neural light field 3D printingACM Transactions on Graphics10.1145/3414685.341787939:6(1-12)Online publication date: 27-Nov-2020
    • (2019)Manufacturing Application-Driven Foveated Near-Eye DisplaysIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.289878125:5(1928-1939)Online publication date: May-2019
    • (2019)Low-crosstalk super multi-view lenticular printing using triplet lenticular lensOptik10.1016/j.ijleo.2019.163666(163666)Online publication date: Nov-2019
    • (2018)Widening Viewing Angles of Automultiscopic Displays Using Refractive InsertsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.279459924:4(1554-1563)Online publication date: 1-Apr-2018
    • (2018)Design and analysis of directional front projection screensComputers & Graphics10.1016/j.cag.2018.05.01074(213-224)Online publication date: Aug-2018
    • (2017)Directional screensProceedings of the 1st Annual ACM Symposium on Computational Fabrication10.1145/3083157.3083162(1-10)Online publication date: 12-Jun-2017
    • (2017)Leaked light field from everyday materialProceedings of the 8th Augmented Human International Conference10.1145/3041164.3041174(1-9)Online publication date: 16-Mar-2017
    • (2017)State of the Art in Methods and Representations for Fabrication-Aware DesignComputer Graphics Forum10.1111/cgf.1314636:2(509-535)Online publication date: 1-May-2017
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media