skip to main content
10.1145/2462096.2462129acmconferencesArticle/Chapter ViewAbstractPublication PageswisecConference Proceedingsconference-collections
research-article

Efficient, secure, private distance bounding without key updates

Published: 17 April 2013 Publication History

Abstract

We propose a new distance bounding protocol, which builds upon the private RFID authentication protocol by Peeters and Hermans [25]. In contrast to most distance-bounding protocols in literature, our construction is based on public-key cryptography. Public-key cryptography (specifically Elliptic Curve Cryptography) can, contrary to popular belief, be realized on resource constrained devices such as RFID tags. Our protocol is wide-forward-insider private, achieves distance-fraud resistance and near-optimal mafia-fraud resistance. Furthermore, it provides strong impersonation security even when the number of time-critical rounds supported by the tag is very small. The computational effort for the protocol is only four scalar-EC point multiplications. Hence the required circuit area is minimal because only an ECC coprocessor is needed: no additional cryptographic primitives need to be implemented.

References

[1]
M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman assumptions and an analysis of DHIES. In D. Naccache, editor, Cryptographer's Track at RSA Conference, volume 2020 of LNCS, pages 143--158. Springer, 2001.
[2]
G. Avoine, M. A. Bingol, S. Karda, C. Lauradoux, and B. Martin. A formal framework for analyzing RFID distance bounding protocols. In Journal of Computer Security - Special Issue on RFID System Security, 2010, 2010.
[3]
G. Avoine, C. Lauradoux, and B. Martin. How secret-sharing can defeat terrorist fraud. In Proceedings of the Fourth ACM Conference on Wireless Network Security WISEC 2011, pages 145--156. ACM Press, 2011.
[4]
G. Avoine and A. Tchamkerten. An efficient distance bounding RFID authentication protocol: Balancing false-acceptance rate and memory requirement. In Conference on Information Security 2009, volume 5735 of LNCS, pages 250--261. Springer, 2009.
[5]
M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The One-More-RSA-Inversion problems and the security of Chaum's blind signature scheme. Journal of Cryptology, 16:185--215, 2003.
[6]
I. Boureanu, A. Mitrokotsa, and S. Vaudenay. On the pseudorandom function assumption in (secure) distance-bounding protocols. In Progress in Cryptology -- LATINCRYPT 2012, volume 7533 of LNCS, pages 100--120. Springer, 2012.
[7]
S. Brands and D. Chaum. Distance-bounding protocols. In Advances in Cryptology -- EUROCRYPT'93, volume 765 of LNCS, pages 344--359. Springer, 1993.
[8]
D. R. Brown. Generic groups, collision resistance, and ECDSA. Designs, Codes and Cryptography, 35(1):119--152, 2005.
[9]
D. R. L. Brown and K. Gjøsteen. A security analysis of the NIST SP 800-90 elliptic curve random number generator. In A. Menezes, editor, Advances in Cryptology -- CRYPTO, volume 4622 of LNCS, pages 466--481. Springer, 2007.
[10]
L. Bussard and W. Bagga. Distance-bounding proof of knowledge to avoid real-time attacks. In Security and Privacy in the Age of Ubiquitous Computing, volume 181 of IFIP AICT, pages 222--238. Springer, 2005.
[11]
C. Chevalier, P.-A. Fouque, D. Pointcheval, and S. Zimmer. Optimal randomness extraction from a Diffie-Hellman element. In Advances in Cryptology -- EUROCRYPT '09, number 5479 in LNCS, pages 572--589. Springer-Verlag, 2009.
[12]
B. Danev, T. S. Heydt-Benjamin, and S.vCapkun. Physical-layer identification of RFID devices. In USENIX, pages 125--136. USENIX, 2009.
[13]
Y. Desmedt. Major security problems with the 'unforgeable' (Feige)-Fiat-Shamir proofs of identity and how to overcome them. In SecuriCom, pages 15--17. SEDEP Paris, France, 1988.
[14]
U. Dürholz, M. Fischlin, M. Kasper, and C. Onete. A formal approach to distance bounding RFID protocols. In Proceedings of the 14th Information Security Conference ISC 2011, volume 7001 of LNCS, pages 47--62. Springer, 2011.
[15]
M. Fischlin and C. Onete. Provably secure distance-bounding: an analysis of prominent protocols. 6th Conference on Security and Privacy in Wireless and Mobile Networks ACM WISec 2013, 2013.
[16]
A. Francillon, B. Danev, and S.vCapkun. Relay attacks on passive keyless entry and start systems in modern cars. Cryptology ePrint Archive, Report 2010/332, 2010. http://eprint.iacr.org/.
[17]
O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press, 2001.
[18]
G. P. Hancke and M. G. Kuhn. An RFID distance bounding protocol. In Conference on Security and Privacy for Emergency Areas in Communication Networks 2005, pages 67--73. IEEE, 2005.
[19]
J. Hermans, A. Pashalidis, F. Vercauteren, and B. Preneel. A new RFID privacy model. In V. Atluri and C. Diaz, editors, ESORICS 2011, volume 6879 of LNCS, pages 568--587. Springer, 2011.
[20]
C. H. Kim and G. Avoine. RFID distance bounding protocol with mixed challenges to prevent relay attacks. In Conference on Cryptology and Networks Security 2009, volume 5888 of LNCS, pages 119--131. Springer, 2009.
[21]
C. H. Kim, G. Avoine, F. Koeune, F. Standaert, and O. Pereira. The swiss-knife RFID distance bounding protocol. In Information Security and Cryptology (ICISC) 2008, LNCS, pages 98--115. Springer, 2008.
[22]
Y. K. Lee, L. Batina, K. Sakiyama, and I. Verbauwhede. Elliptic curve based security processor for RFID. IEEE Transactions on Computers, 57(11):1514--1527, 2008.
[23]
Y. K. Lee, L. Batina, D. Singelée, and I. Verbauwhede. Low-cost untraceable authentication protocols for RFID. pages 55--64. ACM, 2010.
[24]
C. Onete. Key updates for RFID distance-bounding protocols: Achieving narrow-destructive privacy. Cryptology ePrint Archive, Report 2012/165, 2012. http://eprint.iacr.org/.
[25]
R. Peeters and J. Hermans. Wide strong private RFID identification based on zero-knowledge. Cryptology ePrint Archive, Report 2012/389, 2012. http://eprint.iacr.org/.
[26]
A. Ranganathan, N. O. Tippenhauer, D. Singelée, B. Skoric, and S. Capkun. Design and Implementation of a Terrorist Fraud Resilient Distance Bounding System. In S. Foresti, F. Martinelli, and M. Yung, editors, ESORICS 2012, volume 7459 of LNCS, pages 415--432. Springer-Verlag, 2012.
[27]
K. B. Rasmussen and S.vCapkun. Realization of RF Distance Bounding. In USENIX, pages 389--402. USENIX, 2010.
[28]
J. Reid, J. M. G. Nieto, T. Tang, and B. Senadji. Detecting relay attacks with timing-based protocols. In ACM symposium on information, computer and communications security (ASIACCS) 2007, pages 204--213. ACM Press, 2007.
[29]
SHA-3 Zoo. Overview of all Candidates for the Current SHA-3 Hash Competition Organized by NIST. http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.
[30]
R. Trujillo-Rasua, B. Martin, and G. Avoine. The Poulidor distance-bounding protocol. In RFIDSec 2010, volume 6370 of LNCS, pages 239--257. Springer, 2010.
[31]
T. van Deursen and S. Radomirović. Insider attacks and privacy of RFID protocols. In S. Petkova-Nikova, A. Pashalidis, and G. Pernul, editors, EUROPKI, volume 7163 of LNCS, pages 65--80. Springer, 2011.
[32]
S. Vaudenay. On privacy models for RFID. In Advances in Cryptology -- Asiacrypt 2007, volume 4883 of LNCS, pages 68--87. Springer, 2007.
[33]
E. Wenger and M. Hutter. A hardware processor supporting elliptic curve cryptography for less than 9 kGEs. In CARDIS 2011, volume 7079 of LNCS, pages 182--198. Springer, 2011.
[34]
A. Yang, Y. Zhuang, and D. S. Wong. An efficient single-slow-phase mutually authenticated RFID distance-bounding protocol with tag privacy. In Information and Communications Security, volume 7618 of LNCS, pages 285--292. Springer, 2012.
[35]
A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). In FOCS 1982, pages 80--91. IEEE Computer Society, 1982.

Cited By

View all
  • (2024)Distance‐Bounding ProtocolsCooperative Intelligent Transport Systems10.1002/9781394325849.ch11(273-293)Online publication date: 11-Oct-2024
  • (2023)Malicious Relay Detection and Legitimate Channel RecoveryProceedings of the 16th ACM Conference on Security and Privacy in Wireless and Mobile Networks10.1145/3558482.3590193(353-363)Online publication date: 29-May-2023
  • (2021)Emerging Terahertz Integrated Systems in SiliconIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2021.308760468:9(3537-3550)Online publication date: Sep-2021
  • Show More Cited By

Index Terms

  1. Efficient, secure, private distance bounding without key updates

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WiSec '13: Proceedings of the sixth ACM conference on Security and privacy in wireless and mobile networks
    April 2013
    230 pages
    ISBN:9781450319980
    DOI:10.1145/2462096
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 April 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. cryptographic protocol
    2. distance bounding
    3. privacy
    4. rfid

    Qualifiers

    • Research-article

    Conference

    WISEC'13
    Sponsor:

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)9
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Distance‐Bounding ProtocolsCooperative Intelligent Transport Systems10.1002/9781394325849.ch11(273-293)Online publication date: 11-Oct-2024
    • (2023)Malicious Relay Detection and Legitimate Channel RecoveryProceedings of the 16th ACM Conference on Security and Privacy in Wireless and Mobile Networks10.1145/3558482.3590193(353-363)Online publication date: 29-May-2023
    • (2021)Emerging Terahertz Integrated Systems in SiliconIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2021.308760468:9(3537-3550)Online publication date: Sep-2021
    • (2021)CMOS THz-ID: A 1.6-mm² Package-Less Identification Tag Using Asymmetric Cryptography and 260-GHz Far-Field Backscatter CommunicationIEEE Journal of Solid-State Circuits10.1109/JSSC.2020.301571756:2(340-354)Online publication date: Feb-2021
    • (2020)NFCGateProceedings of the 14th USENIX Conference on Offensive Technologies10.5555/3488877.3488882(5-5)Online publication date: 11-Aug-2020
    • (2020)Dynamic Membership Management in Anonymous and Deniable Distance BoundingSustainability10.3390/su12241033012:24(10330)Online publication date: 10-Dec-2020
    • (2020)Beyond Crypto: Physical-Layer Security for Internet of Things DevicesIEEE Solid-State Circuits Magazine10.1109/MSSC.2020.302184212:4(66-78)Online publication date: Nov-2021
    • (2020)29.8 THzID: A 1.6mm2 Package-Less Cryptographic Identification Tag with Backscattering and Beam-Steering at 260GHz2020 IEEE International Solid- State Circuits Conference - (ISSCC)10.1109/ISSCC19947.2020.9063068(454-456)Online publication date: Feb-2020
    • (2019)SEPD: An Access Control Model for Resource Sharing in an IoT EnvironmentComputer Security – ESORICS 201910.1007/978-3-030-29962-0_10(195-216)Online publication date: 15-Sep-2019
    • (2018)Two-Hop Distance-Bounding ProtocolsIEEE Transactions on Mobile Computing10.1109/TMC.2017.277176917:7(1723-1736)Online publication date: 1-Jul-2018
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media