skip to main content
10.1145/2463209.2488774acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article

Predicting future technology performance

Published: 29 May 2013 Publication History

Abstract

In this paper we highlight the important role of full-scale 3D Ensemble Monte Carlo (EMC) transport simulations in the performance analysis of contemporary and future decananometer MOSFETs. Considering both electron and hole transport in alternative device structures and materials we demonstrate that conventional drift diffusion (DD) simulations using standard mobility models fail to capture the non-equilibrium transport effects present in these devices, limiting their effectiveness in terms of performing predictive simulation of Si based FinFETs. We clearly demonstrate the capabilities and the power of EMC in evaluating the scaling potential and performance of FinFETs and quantum well transistors employing high mobility materials and the impact that additional scattering sources has on their performance.

References

[1]
Ancona, M. G., and Iafrate, G. J. 1989. Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39 (May 1989) 9536--9540.
[2]
Asenov A., Brown, A. R., Roy G., Cheng, B., Alexander C., Riddet C., Kovac U., Martinez A., Seoane N. and Roy S. 2009. Simulation of statistical variability in nano-CMOS transistors using drift-diffusion, Monte Carlo and non-equilibrium Green's function techniques. J. Comp El. 8 (November 2009) 349--373.
[3]
Benbakhti, B., Kalna, K., Chan, K., Towie, E., Hellings, G., Eneman, G., Meyer, K. D., Meuris, M., and Asenov, A. 2011. Design and analysis of the In0.53Ga0.47As implant-free quantum-well device structure. Microelectronic Engineering. 88 (April 2011) 358--361.
[4]
Brown, A. R., Watling, J. R., Roy, G., Riddet, C., Alexander, C., Kovac, U., Martinez, A., and Asenov A. 2010. Use of density gradient quantum corrections in the simulation of statistical variability in MOSFETs. J. Comp. El. 9, 3--4 187--196.
[5]
Bufler, F. M., Hude, R., and Erlebach, A. 2006. On a simple and accurate quantum correction for Monte Carlo simulation. J. Comp. El. 5 467--469.
[6]
Dijkstra, J. E. and Wenckebach, W. T. 1997. Hole transport in strained Si. J. Appl. Phys. 81 (February 1997) 1259--1263.
[7]
Ferry, D. K., Akis, R., and Vasileska, D. 2000. Quantum Effects in MOSFETs: Use of an Effective Potential in 3D Monte Carlo Simulation of Ultra-Short Channel Devices. In IEDM Tech. Dig. (December 2000) 287--290.
[8]
Georgiev, V. P., Towie, E. and Asenov A. 2013 Impact of Precisely Positioned Dopants on the Performance of an Ultimate Silicon Nanowire Transistor: A Full Three-Dimensional NEGF Simulation Study. IEEE Trans. El. Dev. 60 (March 2013) 965--971.
[9]
Harrison, J. W. and Hauser, J. R. 1976. Alloy scattering in ternary III--V compounds. Phys. Rev. B, Condens. Matter. 13, 12 (June 1976) 5347--5350.
[10]
Hinckley, J. M. and Singh, J. 1994. Monte Carlo studies of ohmic hole mobility in silicon and germanium: Examination of the optical phonon deformation potential. J. Appl. Phys. 76 (October 1994) 4192--4200.
[11]
Hu, C. 2011. New sub-20nm transistors -- why and how. In Proc. Design Automation Conference (DAC) 2011, pp. 460--463
[12]
Intel 22nm 3-D tri-gate transistor technology {online} http://newsroom.intel.com/DOC-2032
[13]
ITRS, International Roadmap for Semiconductors {online}. http://www.itrs.net/Links/2011/ITRS/
[14]
Jacoboni C. and Lugli P. 1989, The Monte Carlo method for semiconductor devices, Springer-Verlag Wien New York.
[15]
Mitard, J., et al. 2011 1mA/um-ION Strained SiGe45 Raised and Embedded S/D in 2011 Symposium on VLSI Technology 134--135.
[16]
Palestri, P., Eminente, S., Esseni, D., Fiegna, C., Sangiorgi, E., and Selmi, L. 2005. An improved semi-classical Monte-Carlo approach for nano-scale MOSFET simulation. Solid-State Elec. 49 727--732.
[17]
Pop, E., Dutton, R. W., and Goodson, K. E. 2004 Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J. Appl. Phys. 96 (November 2004) 4998--5005.
[18]
Ramey, S. M. and Ferry, D. K. 2003. Implementation of Surface Roughness Scattering in Monte Carlo Modeling of Thin SOI MOSFETs Using the Effective Potential. IEEE Trans. Nanotech. 2 (June 2003) 110--114.
[19]
Riddet, C., Alexander, C., Brown, A. R., Roy S., and Asenov A. 2011. Simulation of "Ab Initio" Quantum Confinement Scattering in UTB MOSFETs Using Three-Dimensional Ensemble Monte Carlo. IEEE Trans. El. Dev. 58 (March 2011) 600--608.
[20]
Riddet, C., Watling, J. R., Chan, K., Parker, E. H. C., Whall, T. E., Leadley, D. R., and Asenov, A. 2012. Hole Mobility in Germanium as a Function of Substrate and Channel Orientation, Strain, Doping, and Temperature. IEEE Trans. El. Dev. 59 (July 2012) 1878--1884.
[21]
de Roer, T. G. V. and Widdershoven, F. P. 1986. Ionized Impurity scattering in Monte Carlo calculations. J. Appl. Phys. 59 813--815.
[22]
Sangiorgi, E. and Pinto, M. R. 1992. A Semi-Empirical Model of Surface Scattering for Monte Carlo Simulation of Silicon n-MOSFET's. IEEE Trans. El. Dev., 39 (February 1992) 356--361.
[23]
Sangiorgi, E., Palestri, P., Esseni, D., Fiegna, C. and Selmi, L. 2008. The Monte Carlo approach to transport modeling in deca-nanometer MOSFETs. Solid-State Elec. 52 1414--1423.
[24]
Ungersboeck, E. and Kosina, H. 2005. The Effect of Degeneracy on Electron Transport in Strained Silicon Inversion Layers, in SISPAD. 311--314.
[25]
Vasileska, D., Khan, H. R., Ahmed, S. S., Ringhofer, C. and Heitzinger, C. 2005. Quantum and Coulomb Effects in Nanodevices. Int. J. Nanoscience. 4, 3 305--361.

Cited By

View all
  • (2020)Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm FinFET VehicleIEEE Transactions on Electron Devices10.1109/TED.2020.302752867:12(5374-5380)Online publication date: Dec-2020
  • (2018)Integrated circuit technology characterization and evaluation using automated CAD toolAEU - International Journal of Electronics and Communications10.1016/j.aeue.2018.09.03597(68-78)Online publication date: Dec-2018
  • (2017)An automated CAD tool for rapid technology characterization2017 29th International Conference on Microelectronics (ICM)10.1109/ICM.2017.8268853(1-4)Online publication date: Dec-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
DAC '13: Proceedings of the 50th Annual Design Automation Conference
May 2013
1285 pages
ISBN:9781450320719
DOI:10.1145/2463209
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 May 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. FinFET
  2. InGaAs
  3. MOSFET
  4. Monte Carlo
  5. drift diffusion
  6. germanium
  7. silicon

Qualifiers

  • Research-article

Conference

DAC '13
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,770 of 5,499 submissions, 32%

Upcoming Conference

DAC '25
62nd ACM/IEEE Design Automation Conference
June 22 - 26, 2025
San Francisco , CA , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)1
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Process Variation Analysis of Device Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm FinFET VehicleIEEE Transactions on Electron Devices10.1109/TED.2020.302752867:12(5374-5380)Online publication date: Dec-2020
  • (2018)Integrated circuit technology characterization and evaluation using automated CAD toolAEU - International Journal of Electronics and Communications10.1016/j.aeue.2018.09.03597(68-78)Online publication date: Dec-2018
  • (2017)An automated CAD tool for rapid technology characterization2017 29th International Conference on Microelectronics (ICM)10.1109/ICM.2017.8268853(1-4)Online publication date: Dec-2017
  • (2015)Variability Aware Simulation Based Design- Technology Cooptimization (DTCO) Flow in 14 nm FinFET/SRAM CooptimizationIEEE Transactions on Electron Devices10.1109/TED.2014.236311762:6(1682-1690)Online publication date: Jun-2015
  • (2015)NBTI alleviation on FinFET-made GPUs by utilizing device heterogeneityIntegration, the VLSI Journal10.1016/j.vlsi.2015.04.00351:C(10-20)Online publication date: 1-Sep-2015
  • (2014)Thoughts on Possible Future Charge-Based Technologies for Nano-ElectronicsIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2014.233501161:11(3057-3065)Online publication date: Nov-2014
  • (2014)Mitigating NBTI Degradation on FinFET GPUs through Exploiting Device HeterogeneityProceedings of the 2014 IEEE Computer Society Annual Symposium on VLSI10.1109/ISVLSI.2014.21(577-582)Online publication date: 9-Jul-2014
  • (2014)Designing with FinFET technology2014 International SoC Design Conference (ISOCC)10.1109/ISOCC.2014.7087569(30-31)Online publication date: Nov-2014

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media