skip to main content
10.1145/2463372.2463471acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

A multiset genetic algorithm for the optimization of deceptive problems

Published:06 July 2013Publication History

ABSTRACT

MuGA is an evolutionary algorithm (EA) that represents populations as multisets, instead of the conventional collection. Such representation can be explored to adapt genetic operators in order to increase performance in difficult problems. In this paper we present an adaptation of the mutation operator, multiset wave mutation (MWM), that explores the multiset representation to apply different mutation ratios to the same chromosome, and an adaptation of the replacement operator, multiset decimation replacement (MDR) that preserves multiset representation in the main population and helps MuGA to solve hard deceptive problems. Results obtained in different deceptive functions show that pairing both operators is a robust approach with a high success ratio in most of the problems.

References

  1. J. H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan, 1975.Google ScholarGoogle Scholar
  2. T. BDack, F. Hoffmeister and H. P. Schwefel, A survey of evolution strategies, Belew, R., editor, Proc. Fourth Int. Conf. on Genetic Algorithms, pp 2--9, 1991.Google ScholarGoogle Scholar
  3. D. B. Fogel, An analysis of evolutionary programming, Fogel and Atmar, vol 684, pp 43--51, 1992.Google ScholarGoogle Scholar
  4. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1st ed. A Bradford Book, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Bäck, H. Schwefel and F. Informatik, Evolutionary Computation: An Overview, in Proceedings of IEEE International Conference on Evolutionary Computation, 1996, pp 20--29.Google ScholarGoogle ScholarCross RefCross Ref
  6. H. Mühlenbein and G. Paaß, From recombination of genes to the estimation of distributions I. Binary parameters, in Parallel Problem Solving from Nature -- PPSN IV, vol 1141, H.-M. Voigt, W. Ebeling, I. Rechenberg, e H.-P. Schwefel, Eds Springer Berlin / Heidelberg, 1996, pp 178--187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Hauschild and M. Pelikan, An introduction and survey of estimation of distribution algorithms, Swarm and Evolutionary Computation, pp 111--128, 2011.Google ScholarGoogle Scholar
  8. J. N. Aparício, L. Correia, and F. Moura-Pires, Populations are Multisets - PLATO, W. Banzhaf, J. Daida, A. Eiben, M. Garzon, V. Honavar, M. Jakiela, and R. Smith, eds., Proc. GECCO, vol Morgan Kaufmann, pp 1845--1850, 1999.Google ScholarGoogle Scholar
  9. A. Manso and L. Correia, Genetic algorithms using populations based on multisets, L. Seabra Lopes, N. Lau, P. Mariano, L. Rocha, eds, vol EPIA 2009, pp 53--64, 2009.Google ScholarGoogle Scholar
  10. A. Manso and L. Correia, Preservação da Diversidade Genética no Multiset Genetic Algorithm, in Congresso de Métodos Numéricos em Engenharia 2011, Coimbra, 2011.Google ScholarGoogle Scholar
  11. A. Manso and L. Correia, A multiset genetic algorithm for real coded problems, in Proceedings of the 13th annual conference companion on Genetic and evolutionary computation - GECCO'11, Dublin, Ireland, 2011, p 153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Manso and L. Correia, MuGA: multiset genetic algorithm, in Proceedings of the 13th annual conference companion on Genetic and evolutionary computation, New York, NY, USA, 2011, pp 791--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Sivaraj and T. Ravichandran, A review of selection methods in genetic algorithm, International Journal of Engineering Science and Technology, vol 3, n 5, pp 3792--3797, 2011.Google ScholarGoogle Scholar
  14. A. Otman and A. Jaafar, A Comparative Study of Adaptive Crossover Operators for Genetic Algorithms to Resolve the Traveling Salesman Problem. IJCA (0975--8887), 2011.Google ScholarGoogle Scholar
  15. F. Herrera, M. Lozano and A. M. Sanchez, A taxonomy for the crossover operator for real-coded genetic algorithms: An experimental study, Int. J. Intell. Syst., vol 18, n 3, pp 309--338, Mar 2003.Google ScholarGoogle Scholar
  16. W. Spears and V. Anand, A Study Of Crossover Operators In Genetic Programming. 1991.Google ScholarGoogle Scholar
  17. O. Abdoun, J. Abouchabaka, and C. Tajani, Analyzing the Performance of Mutation Operators to Solve the Travelling Salesman Problem, arXiv:1203.3099, Mar 2012.Google ScholarGoogle Scholar
  18. S. Droste, T. Jansen, and I. Wegener, On the analysis of the (1+1) evolutionary algorithm, Theoretical Computer Science, vol 276, n 1, pp 51--81, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Lozano, F. Herrera, and J. Cano, Replacement strategies to preserve useful diversity in steady-state genetic algorithms, Information Sciences, vol 178, n 23, pp 4421--4433, Dez 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. F. Galan and O. J. Mengshoel, Generalized crowding for genetic algorithms, in Proceedings of the 12th annual conference on Genetic and evolutionary computation, New York, NY, USA, 2010, pp 775--782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. L. Yu and P. N. Suganthan, Ensemble of niching algorithms, Information Sciences, vol 180, n 15, pp 2815--2833, Ago 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Jayachandran and S. Corns, A comparative study of diversity in evolutionary algorithms, 2010, pp 1--7.Google ScholarGoogle Scholar
  23. A. Manso and L. Correia, MITree - Multiset Indexed Tree, Congresso de Métodos Numéricos em Engenharia 2011, Coimbra, Portugal, 2011.Google ScholarGoogle Scholar
  24. L. Spector, T. Helmuth, and K. Harrington, Fecundity and selectivity in evolutionary computation, in Proceedings of the 13th annual conference companion on Genetic and evolutionary computation, New York, NY, USA, 2011, pp 129--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. E. Goldberg, Simple Genetic Algorithms and the Minimal, Deceptive Problem, Genetic Algorithms and Simulated Annealing, vol L. Davis, editor, San Mateo, CA: Morgan Kaufmann, pp 74--88, 1987.Google ScholarGoogle Scholar
  26. S. Yang, Adaptive group mutation for tackling deception in genetic search, WSEAS Transactions on Systems, vol 3, n 1, pp 107--112, 2004.Google ScholarGoogle Scholar
  27. Y. Chen, J. Hu, K. Hirasawa, and S. Yu, Solving deceptive problems using a genetic algorithm with reserve selection, in IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), 2008, pp 884--889.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. W. Hauschild and M. Pelikan, Network crossover performance on NK landscapes and deceptive problems, in Proceedings of the 12th annual conference on Genetic and evolutionary computation, New York, NY, USA, 2010, pp 713--720. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, BOA: The Bayesian Optimization Algorithm, 1999, pp 525--532.Google ScholarGoogle Scholar
  30. L. D. Whitley, Fundamental Principles of Deception in Genetic Search, Foundations of genetic algorithms, vol 1, n 1980, pp 221--241, 1991.Google ScholarGoogle Scholar
  31. G. Harik, Linkage learning via probabilistic modeling in the ECGA, Urbana, vol 51, n 61, p 801, 1999.Google ScholarGoogle Scholar
  32. M. Pelikan and D. E. Goldberg, Escaping hierarchical traps with competent genetic algorithms, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), 2001, pp 511--518.Google ScholarGoogle Scholar
  33. S. Hill e C. O'Riordan, Examining the use of a non-trivial fixed genotype-phenotype mapping in genetic algorithms to induce phenotypic variability over deceptive uncertain landscapes, in 2011 IEEE Congress on Evolutionary Computation (CEC), 2011, pp 1404--1411.Google ScholarGoogle Scholar

Index Terms

  1. A multiset genetic algorithm for the optimization of deceptive problems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      GECCO '13: Proceedings of the 15th annual conference on Genetic and evolutionary computation
      July 2013
      1672 pages
      ISBN:9781450319638
      DOI:10.1145/2463372
      • Editor:
      • Christian Blum,
      • General Chair:
      • Enrique Alba

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 July 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      GECCO '13 Paper Acceptance Rate204of570submissions,36%Overall Acceptance Rate1,669of4,410submissions,38%

      Upcoming Conference

      GECCO '24
      Genetic and Evolutionary Computation Conference
      July 14 - 18, 2024
      Melbourne , VIC , Australia

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader