skip to main content
10.1145/2464576.2464577acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
introduction
Free access

Representations for evolutionary algorithms

Published: 06 July 2013 Publication History

Abstract

Successful and efficient use of evolutionary algorithms (EAs) depends on the choice of the genotype, the problem representation (mapping from genotype to phenotype) and on the choice of search operators that are applied to the genotypes. These choices cannot be made independently of each other. The question whether a certain representation leads to better performing EAs than an alternative representation can only be answered when the operators applied are taken into consideration. The reverse is also true: deciding between alternative operators is only meaningful for a given representation.
In EA practice one can distinguish two complementary approaches. The first approach uses indirect representations where a solution is encoded in a standard data structure, such as strings, vectors, or discrete permutations, and standard off-the-shelf search operators are applied to these genotypes. To evaluate the solution, the genotype needs to be mapped to the phenotype space. The proper choice of this genotype-phenotype mapping is important for the performance of the EA search process. The second approach, the direct representation, encodes solutions to the problem in its most 'natural' space and designs search operators to operate on this representation.

References

[1]
Bäck, T., Michalewicz, Z., and Yao, X., editors (1997). Proceedings of the Fourth International Conference on Evolutionary Computation, Piscataway. IEEE Service Center.
[2]
Barnett, L. (1997). Tangled webs: Evolutionary dynamics on fitness landscapes with neutrality. Master's thesis, School of Cognitive Sciences, University of East Sussex, Brighton.
[3]
Barnett, L. (1998). Ruggedness and neutrality: The NKp family of fitness landscapes. In Adami, C., Belew, R. K., Kitano, H., and Taylor, C. E., editors, Proceedings of the 6th International Conference on Artificial Life (ALIFE-98), pages 18--27, Cambridge. MIT Press.
[4]
Barnett, L. (2001). Netcrawling - optimal evolutionary search with neutral networks. In (Kim et al., 2001), pages 30--37.
[5]
Beasley, D., Bull, D. R., and Martin, R. R. (1993). Reducing epitasis in combinatorial problems by expansive coding. In Forrest, S., editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 400--407, San Francisco. Morgan Kaufmann.
[6]
Choi, S.-S. and Moon, B.-R. (2003). Normalization in genetic algorithms. In Cantu-Paz, E., Foster, J. A., Deb, K., Davis, D., Roy, R., O'Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M. A., Schultz, A. C., Dowsland, K., Jonoska, N., and Miller, J., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2003, pages 862--873, Heidelberg. Springer.
[7]
Choi, S.-S. and Moon, B.-R. (2008). Normalization for genetic algorithms with nonsynonymously redundant encodings. IEEE Trans. Evolutionary Computation, 12(5):604--616.
[8]
Cohoon, J. P., Hegde, S. U., Martin, W. N., and Richards, D. (1988). Floorplan design using distributed genetic algorithms. In IEEE International Conference on Computer Aided-Design, pages 452--455, Piscataway. IEEE.
[9]
Daida, J. M., Bertram, R., Stanhope, S., Khoo, J., Chaudhary, S., Chaudhri, O., and Polito, J. (2001). What makes a problem GP-hard? Analysis of a tunably difficult problem in genetic programming. Genetic Programming and Evolvable Machines, 2(2):165--191.
[10]
Davis, L. (1989). Adapting operator probabilities in genetic algorithms. In Schaffer, J. D., editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 61--69, Burlington. Morgan Kaufmann.
[11]
Ebner, M., Langguth, P., Albert, J., Shackleton, M., and Shipman, R. (2001). On neutral networks and evolvability. In (Kim et al., 2001), pages 1--8.
[12]
Eshelman, L. J. and Schaffer, J. D. (1991). Preventing premature convergence in genetic algorithms by preventing incest. In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 115--122, Burlington. Morgan Kaufmann.
[13]
Feller, W. (1957). An Introduction to Probability Theory and its Applications, volume 1. John Wiley & Sons, New York, 1st edition.
[14]
Fogel, D. B. and Stayton, L. C. (1994). On the effectiveness of crossover in simulated evolutionary optimization. BioSystems, 32:171--182.
[15]
Fonseca, C., Kim, J.-H., and Smith, A., editors (2000). Proceedings of 2000 IEEE Congress on Evolutionary Computation, Piscataway. IEEE Press.
[16]
Fox, B. R. and McMahon, M. B. (1991). Genetic operators for sequencing problems. In Rawlins, G. J. E., editor, Foundations of Genetic Algorithms, pages 284--300, San Mateo. Morgan Kaufmann.
[17]
Gerrits, M. and Hogeweg, P. (1991). Redundant coding of an NP-complete problem allows effective genetic algorithm search. In Schwefel, H.-P. and Männer, R., editors, Parallel Problem Solving from Nature - PPSN I, volume 496 of LNCS, pages 70--74, Berlin. Springer.
[18]
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading.
[19]
Goldberg, D. E. (1991). Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Systems, 5(2):139--167.
[20]
Harik, G. R., Cantu-Paz, E., Goldberg, D. E., and Miller, B. L. (1997). The gambler's ruin problem, genetic algorithms, and the sizing of populations. In (Bäck et al., 1997), pages 7--12.
[21]
Hoai, N. X., McKay, R. I., and Essam, D. L. (2006). Representation and structural difficulty in genetic programming. IEEE Trans. Evolutionary Computation, 10(2):157--166.
[22]
Jones, T. and Forrest, S. (1995). Fitness distance correlation as a measure of problem difficulty for genetic algorithms. Proceedings of the Sixth International Conference on Genetic Algorithms, pages 184--192.
[23]
Julstrom, B. A. (1999). Redundant genetic encodings may not be harmful. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela, M., and Smith, R. E., editors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '99, page 791, Burlington. Morgan Kaufmann.
[24]
Kim, J.-H., Zhang, B.-T., Fogel, G., and Kuscu, I., editors (2001). Proceedings of 2001 IEEE Congress on Evolutionary Computation, Piscataway. IEEE Press.
[25]
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press.
[26]
Knowles, J. D. and Watson, R. A. (2002). On the utility of redundant encodings in mutationbased evolutionary search. In Merelo, J. J., Adamidis, P., Beyer, H.-G., Fernandez-Villacanas, J.-L., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature--PPSN VII, pages 88--98, Berlin. Springer.
[27]
Liepins, G. E. and Vose, M. D. (1990). Representational issues in genetic optimization. Journal of Experimental and Theoretical Artificial Intelligence, 2:101--115.
[28]
Moraglio, A. and Poli, R. (2004). Topological interpretation of crossover. In Deb, K., Poli, R., Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster, J., Harman, M., Holland, O., Lanzi, P. L., Spector, L., Tettamanzi, A., Thierens, D., and Tyrrell, A., editors, gecco2004, pages 1377--1388, Heidelberg. Springer.
[29]
Palmer, C. C. (1994). An approach to a problem in network design using genetic algorithms. PhD thesis, Polytechnic University, Brooklyn, NY.
[30]
Radcliffe, N. J. (1992). Non-linear genetic representations. In Männer, R. and Manderick, B., editors, Parallel Problem Solving from Nature -- PPSN II, pages 259--268, Berlin. Springer.
[31]
Radcliffe, N. J. (1997). Theoretical foundations and properties of evolutionary computations: Schema processing. In Bäck, T., Fogel, D. B., and Michalewicz, Z., editors, Handbook of Evolutionary Computation, pages B2.5:1--B2.5:10. Institute of Physics Publishing and Oxford University Press, Bristol and New York.
[32]
Raidl, G. R. (2000). An efficient evolutionary algorithm for the degree-constrained minimum spanning tree problem. In (Fonseca et al., 2000), pages 43--48.
[33]
Reeves, C. R. (2000). Fitness landscapes: A guided tour. Joint tutorials of SAB 2000 and PPSN 2000, tutorial handbook.
[34]
Ronald, S. (1997). Robust encodings in genetic algorithms: A survey of encoding issues. In (Bäck et al., 1997), pages 43--48.
[35]
Ronald, S., Asenstorfer, J., and Vincent, M. (1995). Representational redundancy in evolutionary algorithms. In Fogel, D. B. and Attikiouzel, Y., editors, Proceedings of the 1995 IEEE International Conference on Evolutionary Computation, volume 2, pages 631--636, Piscataway. IEEE Service Center.
[36]
Rothlauf, F. (2002). Representations for Genetic and Evolutionary Algorithms. Number 104 in Studies on Fuzziness and Soft Computing. Springer, Heidelberg, 1st edition.
[37]
Rothlauf, F. and Goldberg, D. E. (2003). Redundant representations in evolutionary computation. Evolutionary Computation, 11(4):381--415.
[38]
Rowe, J. E., Vose, M. D., and Wright, A. H. (2010). Representation invariant genetic operators. Evolutionary Computation, 18(4):635--660.
[39]
Shackleton, M., Shipman, R., and Ebner, M. (2000). An investigation of redundant genotypephenotype mappings and their role in evolutionary search. In (Fonseca et al., 2000), pages 493--500.
[40]
Shipman, R. (1999). Genetic redundancy: Desirable or problematic for evolutionary adaptation. In Dobnikar, A., Steele, N. C., Pearson, D. W., and Albrecht, R. F., editors, Proceedings of the 4th International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA), pages 1--11, Berlin. Springer.
[41]
Shipman, R., Shackleton, M., Ebner, M., and Watson, R. (2000a). Neutral search spaces for artificial evolution: A lesson from life. In Bedau, M., McCaskill, J., Packard, N., and Rasmussen, S., editors, Proceedings of Artificial Life VII, page section III (Evolutionary and Adaptive Dynamics). MIT Press.
[42]
Shipman, R., Shackleton, M., and Harvey, L. (2000b). The use of neutral genotypephenotype mappings for improved evoutionary search. British Telecom Technology Journal, 18(4):103--111.
[43]
Smith, T., Husbands, P., and O'Shea, M. (2001a). Evolvability, neutrality and search space. Technical Report 535, School of Cognitive and Computing Sciences, University of Sussex.
[44]
Smith, T., Husbands, P., and O'Shea, M. (2001b). Neutral networks and evolvability with complex genotype-phenotype mapping. In Proceedings of the European Converence on Artificial Life: ECAL2001, volume LNAI 2159, pages 272--281, Berlin. Springer.
[45]
Smith, T., Husbands, P., and O'Shea, M. (2001c). Neutral networks in an evolutionary robotics search space. In (Kim et al., 2001), pages 136--145.
[46]
Surry, P. D. and Radcliffe, N. (1996). Formal algorithms + formal representations = search strategies. In Voigt, H.-M., Ebeling, W., Rechenberg, I., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature -- PPSN IV, pages 366--375, Berlin. Springer.
[47]
Toussaint, M. and Igel, C. (2002). Neutrality: A necessity for self-adaptation. In Fogel, D. B., El-Sharkawi, M. A., Yao, X., Greenwood, G., Iba, H., Marrow, P., and Shackleton, M., editors, Proceedings of 2002 IEEE Congress on Evolutionary Computation, pages 1354--1359, Piscataway. IEEE Press.
[48]
Watson, R. A., Hornby, G. S., and Pollack, J. B. (1998). Modeling building-block interdependency. In Eiben, A. E., Bäck, T., Schoenauer, M., and Schwefel, H.- P., editors, Parallel Problem Solving from Nature -- PPSN V, volume 1498 of LNCS, pages 97--106, Berlin. Springer.
[49]
Whitley, L. D. (2000). Walsh analysis, schemata, embedded landscapes and no free lunch. Joint Tutorials of SAB 2000 and PPSN 2000.
[50]
Yu, T. and Miller, J. (2001). Neutrality and evolvability of Boolean function landscapes. In Miller, J., Tomassini, M., Lanzi, P. L., Ryan, C., Tetamanzi, A. G. B., and Langdon, W. B., editors, Proceedings of the Fourth European Conference on Genetic Programming (EuroGP-2001), volume 2038 of LNCS, pages 204--217, Berlin. Springer.
[51]
Yu, T. and Miller, J. (2002). Finding needles in haystacks is not hard with neutrality. In Foster, J. A., Lutton, E., Miller, J., Ryan, C., and Tettamanzi, A. G. B., editors, Proceedings of the Fifth European Conference on Genetic Programming (EuroGP- 2002), volume 2278 of LNCS, pages 13--25, Berlin. Springer.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '13 Companion: Proceedings of the 15th annual conference companion on Genetic and evolutionary computation
July 2013
1798 pages
ISBN:9781450319645
DOI:10.1145/2464576
  • Editor:
  • Christian Blum,
  • General Chair:
  • Enrique Alba
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 July 2013

Check for updates

Author Tag

  1. representations

Qualifiers

  • Introduction

Conference

GECCO '13
Sponsor:
GECCO '13: Genetic and Evolutionary Computation Conference
July 6 - 10, 2013
Amsterdam, The Netherlands

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 104
    Total Downloads
  • Downloads (Last 12 months)21
  • Downloads (Last 6 weeks)3
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media