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ABSTRACT
SHRUTI is a model of how first-order logic can be repre-
sented and reasoned upon using a network of spiking neu-
rons in an attempt to model the brain’s ability to perform
reasoning. This paper extends the biological plausibility of
the SHRUTI model by presenting a genotype representation
of connections in a SHRUTI network using indirect encod-
ing and showing that networks represented in this way can
be generated by an evolutionary process.
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1. INTRODUCTION
Neural-symbolic integration concerns the representation of

symbolic information in neural networks [3]. One motivation
of this field is to produce models of symbolic representa-
tion in the brain’s biological neural network. SHRUTI is
a neural-symbolic network which models reasoning in the
brain in a way that is claimed to be biologically plausible [6],
owing to its use of spiking neurons [5] and Hebbian learn-
ing [4]. Predicates are represented by clusters of nodes and
role instantations are performed by firing these nodes in syn-
chrony with nodes representing the role-fillers. These role
bindings then propagate along connections between clusters
that represent relations between predicates.

The developers of SHRUTI discuss the idea that the pre-
requisite structure required to enable it to learn logical re-
lations can be realised in a way which is itself biologically
plausible known as indirect encoding [7]. Rather than ex-
plicitly defining the topology of the phenotype (direct en-
coding), indirect encoding provides a set of developmental
rules for the gradual development of the phenotype. This
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paper presents the first indirect encoding of SHRUTI net-
works and shows that developmental genomes for creating
connections between SHRUTI’s neurons can be produced
through evolution using artificial development [1], a form of
evolutionary computing which uses indirect encoding.

2. EVOLVING SHRUTI NETWORKS

2.1 The SHRUTI Genome
A genome for developing connections in a SHRUTI net-

work has recently been produced by the authors [8]. The
genome takes the form of a decision tree in which each path
from the root node to a leaf node respresents a different rule.
A network is presented with a temporal sequence of predi-
cate instances supporting a set of causal relations. At each
time t, all predicate instances occurring at t are observed
and any existing connection weights are updated according
to SHRUTI’s learning algorithm. The rules in the genome
are then assessed and the actions of any satisfied rules are
executed. Owing to the use of indirect encoding, the same
genome is able to develop networks of different sizes depend-
ing on the size of the represented logic program, even though
the size of the genome is fixed, showing that the size of the
genotype is independent of the size of the phenotype and
that the genome is therefore scalable.

2.2 Fitness Function
The goal was to minimise two objectives. As the network

develops, error will change during development as more rela-
tions are learned. Therefore the area beneath the error-time
graph (referred to as e-area) was chosen as the first objec-
tive in order to encourage the algorithm to converge not only
towards networks of minimum error but towards networks
that can achieve minimum error as early as possible. Error
is based on the number of training questions a network an-
swers incorrectly. A question takes the form of a predicate
instance, for example P (a, b), which a developed network
must evaluate as true, false, or unknown.

The second objective was to minimise the number of weight
updates performed on the network. Minimising this reduces
the workload of the learning algorithm and constrains the
number of connections in the network, because as the num-
ber of connections in a network increases, so does the number
of the weights the algorithm has to update.
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Figure 1: Points obtained from 50 trials on training
data. Points marked with a dot represent genomes
that answered all training questions correctly.

2.3 Evolutionary Algorithm
A multi-objective algorithm NSGA-II [2] was chosen to

minimise both objectives, with a population size of 100 over
500 generations, repeated over 50 trials. Binary tournament
selection with replacement was used to select genomes for
recombination. Crossover and mutation were performed at
rates of 90% and 10% respectively.

3. RESULTS

3.1 Performance on Training Questions
Fig. 1 shows samples obtained from 50 trials. Points

marked with a dot indicate genomes which developed net-
works capable of answering all training questions correctly
and therefore yielded an error of zero. In most trials a zero-
error network was found at some point before the 100th
generation, suggesting that such networks are easily found.
However the number of updates required to train the net-
work to this level of accuracy is high compared to networks
found in later generations, suggesting that even though find-
ing genomes for constructing zero-error networks may be a
trivial task for the algorithm, maximising the speed at which
such networks learn is not.

In general, three very distinct groups of networks emerged
(indicated by the three boxes in Fig. 1), though there were
a few exceptions. The first group contains the zero-error
networks discussed above, which correctly learns all rela-
tions based on training observations. Genomes in the second
group develop networks which always produce the same an-
swer for any given predicate, for example always answering
‘true’ for predicate P and always answering ‘false’ for pred-
icate Q. In the third group, most genomes develop a very
small number of connections if any at all, and the resulting
networks always answer ‘unknown’ for every question.

3.2 Performance on Test Questions
The evolved genomes were tested by asking the developed

networks a set of test questions distinct from and larger
than the set of training questions. Fig. 2 shows how the
networks performed on the test set. The general shapes of
the Pareto fronts remain roughly the same for both sets
and every genome capable of developing networks which
answered all training questions correctly could also answer
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Figure 2: Points obtained by running all genomes
developed in all 50 trials on a set of test questions.

every test question correctly, suggesting that the evolved
genomes adapt well to unseen test questions.

4. CONCLUSIONS
Three groups of genomes for developing connections in

SHRUTI networks emerged, each with its own distinct strat-
egy for answering questions. One of these groups was suc-
cessful in producing networks that learned to answer all
training and test questions correctly. These findings sup-
port the claim of the SHRUTI developers that the prerequi-
site structure required to enable the learning of relations in
SHRUTI can be realised through a model of biological devel-
opment, adding another dimension of biological plausibility
to the model. However, to support the idea of a develop-
mental SHRUTI model even further, we plan to also produce
the neurons themselves rather than just the connections be-
tween them, and other representational structures such as
episodic facts and type hierarchies.
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