skip to main content
10.1145/2470654.2466432acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Designing graphical menus for novices and experts: connecting design characteristics with design goals

Published:27 April 2013Publication History

ABSTRACT

This paper presents a design space for graphical menus. We model the design space as a set of design goals, a set of design characteristics, and connections between the two. The design goals are based on novice and expert behaviors. The connections link the choices for design characteristics with the positive or negative effects that these choices have on the design goals. The paper further synthesizes the design space into a succinct form of structured design recommendations. A case study demonstrates how these recommendations can be used to assess and compare the strengths and weaknesses of two menu designs.

References

  1. Ahlström, D. Modeling and improving selection in cascading pull-down menus using Fitts' law, the steering law and force fields. Proc. CHI 2005, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Accot, J. and Zhai, S. Beyond Fitts' Law: Models for trajectory-based HCI tasks. Proc. CHI 1997, 295--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Buxton B. Sketching User Experiences, Morgan Kaufmann, 2007.Google ScholarGoogle Scholar
  4. Callahan, J., Hopkins, D., Weiser, M., and Shneiderman, B. An empirical comparison of pie vs. linear menus. Proc. CHI 1988, 95--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Card, S. K. User perceptual mechanisms in the search of computer command menus. Proc. CHI 1982, 190--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Card, S. K., Moran, T. P., and Newell, A. The Psychology of Human-Computer Interaction, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Charney, D., Reder, L., and Kusbit, G. Goal setting and procedure selection in acquiring computer skills: a comparison of problem solving and learner exploration. Cognition and Instruction, 7(4), 1990, 323--342.Google ScholarGoogle ScholarCross RefCross Ref
  8. Cockburn, A., Gutwin, C., and Greenberg, S. A predictive model of menu performance. Proc. CHI'07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Feng, J., Sears, A. Beyond errors: measuring reliability for error-prone interaction devices. J. B. & I. T., 29(2), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gan, K. C., and Hoffmann, E. R. Geometrical conditions for ballistic and visually controlled movements. In Ergonomics, 31(5), 1988, 829--839.Google ScholarGoogle ScholarCross RefCross Ref
  11. Graham, E. D., and MacKenzie, C. L. Physical versus virtual pointing. Proc. CHI 1996, 292--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Grossman, T., Kong, N., and Balakrishnan, R. Modeling pointing at targets of arbitrary shapes. Proc. CHI 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hollands, J. G., and Merikle, P. M. Menu organization and user expertise in information search tasks. In J. Human Factors and Ergonomics Society, 29(5), 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hornof, A. J., and Kieras, D. E. Cognitive modeling reveals menu search is both random and systematic. Proc. CHI 1997, 107--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hornof, A. J. Visual search and mouse pointing in labeled versus unlabeled two-dimensional visual hierarchies. In ToCHI, ACM, 8(3), 171--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Inkpen, K. M. Drag-and-drop versus point-and-click mouse interaction styles for children. ACM Transactions on Computer-Human Interaction, 8(1), 2001, 1--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kaptelinin, V. Item Recognition in menu selection: the effect of practice. Proc. CHI 1993, 183--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kiger, J. I. The depth/breadth trade-off in the design of menu-driven user interfaces. International Journal of Man-Machine Studies, 20(2), 1984, 201--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kobayashi, M., and Igarashi, T. Considering the direction of cursor movement for efficient traversal of cascading menus. Proc. UIST 2003, 91--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kristensson, P. O., and Zhai, S. Command strokes with and without preview: using pen gestures on keyboard for command selection. Proc. CHI 2007, 1137--1146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kurtenbach, G. The design and evaluation of marking menus. PhD Thesis, the University of Toronto, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kurtenbach, G., and Buxton, W. The limits of expert performance using hierarchic marking menus. Proc. CHI/INTERACT 1993, 482--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kurtenbach, G., and Buxton, W. User learning and performance with marking menus. Proc. CHI 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Landauer, T., and Nachbar, D. Selection from alphabetic and numeric menu trees using a touch screen: breadth, depth and width. Proc. CHI 1985, 73--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lane, D. M., Napier, H. A., Batsell, R. R., and Naman, J. L. Predicting the skilled use of hierarchical menus with the keystroke-level model. HCI, 8(2), 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lee, E. S., and Raymond, D. R. Menu-driven systems. Encyclopedia of Microcomputers, 11, 1993, 101--127.Google ScholarGoogle Scholar
  27. MacKenzie, I. S., Sellen, A., and Buxton, W. A comparison of input devices in elemental pointing and dragging tasks. Proc. CHI 1991, 161--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. MacKenzie, I. S. Fitts' law as a research and design tool in human-computer interaction. HCI, 7(1), 1992,91--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mayes, J. T., Draper, S. W., McGregor, A. M., and Oatley, K. Information flow in a user interface: The effect of experience and context on the recall of MacWrite screens. Proc. BCS HCI 1988, 275--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mcdonald, J. E., Stone, J. D., and Liebelt, L. S. Searching for items in menus: The effects of organization and type of target. Proc. Human Factors Society, 1983, 834--837.Google ScholarGoogle Scholar
  31. Norman, K. L., and Chin, J. P. The effect of tree structure on search in a hierarchical menu selection system. J. Behaviour & Information Technology, 7(1), 1988.Google ScholarGoogle Scholar
  32. Norman, K. L., and Butler, S. Search by uncertainty: menu selection by target probability. Technical Report from the University of Maryland, 1989.Google ScholarGoogle Scholar
  33. Norman, K. L. The Psychology of Menu Selection. Ablex Publishing Corporation, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Oel, P., Schmidt, P., and Schmitt, A. Time Prediction of Mouse-based Cursor Movements. Proc. CHI 2001.Google ScholarGoogle Scholar
  35. Paap, K. R., and Roske-Hofstrand, R. J. The optimal number of menu options per panel. J. Human Factors & Ergonomics Society, 28(4), 1986, 377--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Phillips, J. G., and Triggs, T. J. Characteristics of cursor trajectories controlled by the computer mouse. In Ergonomics, 44(5), 2001, 527--536.Google ScholarGoogle ScholarCross RefCross Ref
  37. Quinn, P., and Cockburn, A. The effects of menu parallelism on visual search and selection. Proc. Conference on Australasian User Interface, 76, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Robertson, G., McCracken, D., and Newell, A. The ZOG approach to man-machine communication. Int. Journal of Man-Machine Studies, 14, 1981, 461--488.Google ScholarGoogle ScholarCross RefCross Ref
  39. Samp, K., and Decker, S. Supporting menu design with radial layouts. Proc. AVI 2010, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Samp, K., and Decker, S. Visual Search in Radial Menus. Proc. INTERACT 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Samp, K., and Decker, S. Navigation Time Variability: Measuring Menu Navigation Errors. Proc. INTERACT 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Samp, K. The Design and Evaluation of Graphical Radial Menus. Ph.D. Thesis, 2011.Google ScholarGoogle Scholar
  43. Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., Quinn, J. T. Motor-output variability: A theory for the accuracy of rapid motor acts. Psych. Review, 86, 1979.Google ScholarGoogle Scholar
  44. Sears, A., and Shneiderman, B. Split menus: effectively using selection frequency to organize menus. Trans. on Computer-Human Interaction, 1(1), 1994, 27--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S. Designing the User Interface: Strategies for Effective Human-Computer Interaction, Addison Wesley, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Snowberry, K., Parkinson, S. R., and Sisson, N. Computer display menus. In Ergonomics, 26(7), 1983.Google ScholarGoogle Scholar
  47. Somberg, B. L. A comparison of rule-based and positionally constant arrangements of computer menu items. Proc. CHI/GI 1987, 255--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Tanvir, E., Cullen, J., Irani, P., Cockburn, A. AAMU: adaptive activation area menus for improving selection in cascading pull-down menus. Proc. CHI 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Thompson, S. G. Effect on movement performance as a function of visual-motor scale and velocity: An investigation of the speed-accuracy tradeoff. PhD Thesis from the University of Louisiana at Monroe, 2007.Google ScholarGoogle Scholar
  50. Tombaugh, J. and McEwen, S. Comparison of two information retrieval methods on Videotex: tree structure versus alphabetical directory. Proc. CHI 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Treisman, A. Perceptual grouping and attention in visual search for features and for objects. J. Experimental Psych.: Human Perception Performance, 8(2), 1982.Google ScholarGoogle Scholar
  52. Walker, N., Meyer, D. E., and Smelcer, J. B. Spatial and temporal characteristics of rapid cursor-positioning movements with electromechanical mice in humancomputer interaction. Human Factors, 35(3), 1993.Google ScholarGoogle Scholar
  53. Whisenand, T. G., and Emurian, H. H. Analysis of cursor movements with a mouse. Proc. CHI 1997, 533--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Wright, C. E., and Meyer, D. E. Conditions for a linear speed-accuracy trade-off in aimed movements. J. Experimental Psychology, 35A(2), 1983, 279--296.Google ScholarGoogle Scholar
  55. Zhao, S., and Balakrishnan, R. Simple vs. compound mark hierarchical marking menus. Proc. UIST 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Designing graphical menus for novices and experts: connecting design characteristics with design goals

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2013
      3550 pages
      ISBN:9781450318990
      DOI:10.1145/2470654

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 April 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '13 Paper Acceptance Rate392of1,963submissions,20%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader