skip to main content
research-article

Survey on application-layer mechanisms for speech quality adaptation in VoIP

Published:03 July 2013Publication History
Skip Abstract Section

Abstract

VoIP calls are sensitive to several impairments, such as delay and packet loss. One way to overcome these problems is by adaptively adjusting application-layer parameters to keep a minimum speech quality level. At the heart of self-adaptive systems lies a feedback loop, which consists of four key activities: monitoring, analysis, planning, and execution. Nevertheless, the existing adaptive approaches to QoS control of VoIP do not explicitly exhibit this feedback loop. Bringing it to surface can help developers in designing more robust and human-independent VoIP systems. This survey presents a comprehensive review of the current state-of-the-art research on speech quality adaptation of VoIP systems at the application layer and some research challenges on this subject.

References

  1. Abreu-Sernandez, V. and Garcia-Mateo, C. 2000. Adaptive multi-rate speech coder for VoIP transmission. IEE Electron. Lett. Online 36, 23, 1978--1980.Google ScholarGoogle ScholarCross RefCross Ref
  2. Alshakhsi, S. A. A. and Hasbullah, H. 2011. Improving QoS of VoWLAN via cross-layer-based adaptive approach. In Proceedings of the International Conference on Information Science and Applications (ICISA). 1--8.Google ScholarGoogle Scholar
  3. Atzori, L. and Lobina, M. L. 2006a. Playout buffering in IP telephony: A survey discussing problems and approaches. IEEE Commun. Surv. Tutor. 8, 3, 36--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Atzori, L. and Lobina, M. L. 2006b. Playout buffering of speech packets based on a quality maximization approach. IEEE Trans. Multimedia 8, 2, 420--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bai, Y. and Ito, M. R. 2004. QoS control for video and audio communication in conventional and active networks: Approaches and comparison. IEEE Commun. Surv. Tutor. 6, 1, 42--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Barberis, A., Casetti, C., Martin, J. C. D., and Meo, M. 2001. A simulation study of adaptive voice communications on IP networks. Comput. Commun. 24, 9, 757--767. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Beritelli, F. B., Ruggeri, G., and Schembra, G. 2003. TCP-friendly transmission of voice over IP. Eur. Trans. Telecommun. 14, 3, 193--203.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bilbao, N., Fajardo, J. O., and Liberal, F. 2009. PQoS-driven VoIP service adaptation in UMTS networks. In Proceedings of the 2nd International Conference on Simulation Tools and Techniques (ICST). 91:1--91:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bolot, J.-C. and Vega-García, A. 1996. Control mechanisms for packet audio in the internet. In Proceedings of the 15th Annual Joint Conference of the IEEE Computer and Communications Societies (InfoCom'96). 232--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Boutremans, C. and Boudec, J.-Y. L. 2003. Adaptive joint playout buffer and FEC adjustment for internet telephony. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications (InfoCom'03). Vol. 1. 652--662.Google ScholarGoogle Scholar
  11. Carvalho, L., Lima, A., Aguiar, R., Mota, E., and Souza, J. 2005. An E-model implementation for speech quality evaluation in VoIP systems. In Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC'05). Vol. 1. 933--938. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, J.-J., Lee, L., and Tseng, Y.-C. 2011. Integrating SIP and IEEE 802.11e to support handoff and multi-grade QoS for VoIP-over-WLAN applications. Comput. Netw. 55, 1719--1734. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chen, X., Wang, C., Xuan, D., Li, Z., Min, Y., and Zhao, W. 2003. Survey on QoS management of VoIP. In Proceedings of the 2nd International Conference on Computer Networks and Mobile Computing (ICCNMC'03). 69--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Clark, A. D. 2001. Modeling the effects of burst packet loss and recency on subjective voice quality. In Proceedings of the 2nd IP-Telephony Workshop. 123--127.Google ScholarGoogle Scholar
  15. Costa, N. and Nunes, M. S. 2009. Dynamic adaptation of quality of service for VoIP communications. Int. J. Adv. Netw. Serv. 2, 2--3, 155--166.Google ScholarGoogle Scholar
  16. Crawley, E. S., Rajagopalan, B., Nair, R., and Sandick, H. 1998. A framework for QoS-based routing in the Internet. Request for Comments (RFC) 2386. http://tools.ietf.org/html/rfc2386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ding, L., Radwan, A., El-Hennawey, M. S., and Goubran, R. A. 2007. Performance study of objective voice quality measures in VoIP. In Proceedings of the 12th IEEE Symposium on Computers and Communications (ISCC'07). 197--202.Google ScholarGoogle Scholar
  18. Escobar, M. A. and Best, M. L. 2003. Convivo communicator: An interface-adaptive VoIP system for poor quality networks. J. Info., Commun. Ethics Soc. 1, 3, 167--180.Google ScholarGoogle ScholarCross RefCross Ref
  19. ETSI. 1996. Speech communication quality from mouth to ear for 3,1 kHz handset telephony across networks. Tech. rep. ETR 250.Google ScholarGoogle Scholar
  20. ETSI. 1998. GSM 06.90: Digital cellular telecommunications system (Phase 2+). Adaptive Multi-Rate (AMR) speech transcoding, version 7.0.0.Google ScholarGoogle Scholar
  21. Falk, T. and Chan, W. 2008. Hybrid signal-and-link-parametric speech quality measurement for VoIP communications. IEEE Trans. Audio, Speech, Lang. Process. 16, 8, 1579--1589. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Friedman, T., Caceres, R., and Clark, A. D. 2003. RTP control protocol extended reports (RTCP XR). Request for Comments (RFC) 3611. http://www.ietf.org/rfc/3611.txt. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Galiotos, P., Dagiuklas, T., and Arkadianos, D. 2002. QoS management for an enhanced VoIP platform using R-factor and network load estimation functionality. In Proceedings of the 5th IEEE International Conference on High Speed Networks and Multimedia Communications (HSNMC'02). 305--314.Google ScholarGoogle Scholar
  24. Gardner, M. T., Frost, V. S., and Petr, D. W. 2003. Using optimization to achieve efficient quality of service in voice over IP networks. In Proceedings of the 22nd IEEE International Performance, Computing, and Communications Conference (IPCCC'03). 475--480.Google ScholarGoogle Scholar
  25. Gong, Q. and Kabal, P. 2010. Quality-based playout buffering with FEC for conversational VoIP. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (ISCA). 2402--2405.Google ScholarGoogle Scholar
  26. Google Inc. 2011. WebRTC. http://sites.google.com/site/webrtc/.Google ScholarGoogle Scholar
  27. Gros, L. and Chateau, N. 2001. Instantaneous and overall judgements for time-varying speech quality: Assessments and relationships. Acta Acustica united with Acustica 87, 3, 367--377.Google ScholarGoogle Scholar
  28. Herlein, G., Valin, J.-M., Heggestad, A. E., and Moizard, A. 2009. RTP payload format for the Speex codec. Request for Comments (RFC) 5574. http://tools.ietf.org/html/rfc5574.Google ScholarGoogle Scholar
  29. Hoene, C. 2005. Internet telephony over wireless links. Ph.D. dissertation, Technical University of Berlin, TKN.Google ScholarGoogle Scholar
  30. Hoene, C., Karl, H., and Wolisz, A. 2006. A perceptual quality model intended for adaptive VoIP applications. Int. J. Commun. Syst. 19, 3, 299--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Homayounfar, K. 2003. Rate adaptive speech coding for universal multimedia access. IEEE Signal Process. Mag. 20, 2, 30--39.Google ScholarGoogle ScholarCross RefCross Ref
  32. Huang, C.-W., Sukittanon, S., Ritcey, J. A., Chindapol, A., and Hwang, J.-N. 2006. An embedded packet train and adaptive FEC scheme for VoIP over wired/wireless IP networks. In Proceedings of the 31st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'06). Vol. 5. 429--432.Google ScholarGoogle Scholar
  33. Huang, T.-Y., Chen, C.-M., Chen, K.-T., and Huang, P. 2007. Towards user-centric rate adaptations for VoIP traffic. In Proceedings of the Conference of the Special Interest Group on Data Communication (SIGCOMM). Poster Session.Google ScholarGoogle Scholar
  34. Huang, T.-Y., Huang, P., Chen, K.-T., and Wang, P.-J. 2010. Could Skype be more satisfying? A QoE-centric study of the FEC mechanism in an Internet-scale VoIP system. IEEE Net. 24, 2, 42--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Huang, Y., Korhonen, J., and Wang, Y. 2005. Optimization of source and channel coding for voice over IP. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME'05).Google ScholarGoogle Scholar
  36. Huebscher, M. C. and McCann, J. A. 2008. A survey of autonomic computing—degrees, models, and applications. ACM Comput. Surv. 40, 3, 1--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. ITU-T. 2001. Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. ITU-T Recommendation P.862. http://www.itu.int/rec/T-REC-P.862.Google ScholarGoogle Scholar
  38. ITU-T. 2003a. One-way transmission time. ITU-T Recommendation G.114. http://www.itu.int/rec/T-REC-G.114/en.Google ScholarGoogle Scholar
  39. ITU-T. 2003b. Wideband coding of speech at around 16 kbit/s using adaptive multi-rate wideband (AMR-WB). ITU-T Recommendation G.7222. http://www.itu.int/rec/T-REC-G.722.2-200201-S/en.Google ScholarGoogle Scholar
  40. ITU-T. 2004. Single ended method for objective speech quality assessment in narrow-band telephony applications. ITU-T Recommendation P.563. http://www.itu.int/rec/T-REC-P.563-200405-1/en.Google ScholarGoogle Scholar
  41. ITU-T. 2005. Low-complexity coding at 24 and 32 kbit/s for hands-free operation in systems with low frame loss. ITU-T Recommendation G.722.1. http://www.itu.int/rec/T-REC-G.722.1/en.Google ScholarGoogle Scholar
  42. ITU-T. 2006. An architectural framework for support of quality of service in packet networks. ITU-T Recommendation Y.1291. http://www.itu.int/rec/T-REC-Y.1291-200405-I/.Google ScholarGoogle Scholar
  43. ITU-T. 2007. Wideband extension to Recommendation P.862 for the assessment of wideband telephone networks and speech codecs. ITU-T Recommendation P.862.2. http://www.itu.int/rec/T-REC-P.862.2.Google ScholarGoogle Scholar
  44. ITU-T. 2008. Low-complexity, full-band audio coding for high-quality, conversational applications. ITU-T Recommendation G.719. http://www.itu.int/rec/T-REC-G.719/en.Google ScholarGoogle Scholar
  45. ITU-T. 2009. The E-Model, a computational model for use in transmission planning. ITU-T Recommendation G.107. http://www.itu.int/rec/T-REC-G.107.Google ScholarGoogle Scholar
  46. ITU-T. 2011. Perceptual objective listening quality assessment. ITU-T Recommendation P.863. http://www.itu.int/rec/T-REC-P.863/.Google ScholarGoogle Scholar
  47. Jammeh, E., Mkwawa, I.-H., Khan, A., Goudarzi, M., Sun, L., and Ifeachor, E. 2010. Quality of experience (QoE) driven adaptation scheme for voice/video over IP. Telecommu. Syst. 1--13.Google ScholarGoogle Scholar
  48. Jiang, W. and Schulzrinne, H. 2002. Comparison and optimization of packet loss repair methods on VoIP perceived quality under bursty loss. In Proceedings of the 12th International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV'02). 73--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Johansson, I., Frankkila, T., and Synnergren, P. 2002. Bandwidth efficient AMR operation for VoIP. In Proceedings of IEEE Workshop on Speech Coding. 150--152.Google ScholarGoogle Scholar
  50. Jung, Y. and Ibanez, A. A. 2010. Improving wireless VoIP quality by using adaptive packet coding. Electron. Lett. 46, 6, 459--460.Google ScholarGoogle ScholarCross RefCross Ref
  51. Kalama, M., Acar, G., Evans, B., and Isoard, A. 2008. VoIP over DVB-RCS satellite systems: Trial results and the impact of adaptive speech coding using cross-layer design. Comput. Netw. 52, 13, 2461--2472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Karapantazis, S. and Pavlidou, F.-N. 2009. VoIP: A comprehensive survey on a promising technology. Comput. Netw. 53, 12, 2050--2090. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Kawata, T. and Yamada, H. 2006. Adaptive multi-rate VoIP for IEEE 802.11 wireless networks with link adaptation function. In Proceedings of the 49th IEEE Global Telecommunications Conference (GlobeCom'06). 1--5.Google ScholarGoogle Scholar
  54. Ksentini, A. 2009. Enhancing VoWLAN service through adaptive voice coder. In Proceedings of the 14th IEEE Symposium on Computers and Communications (ISCC'09). 673--678.Google ScholarGoogle ScholarCross RefCross Ref
  55. Lee, T.-Y. and Pan, J.-Y. 2008. Improving R-score of adaptive VoIP codec in IEEE 802.16 networks. In Proceedings of the 14th Asia-Pacific Conference on Communications (APCC'08). 1--5.Google ScholarGoogle Scholar
  56. Li, L., Xing, G., Han, Q., and Sun, L. 2010. Adaptive voice stream multicast over low-power wireless networks. In Proceedings of the 31st Real-Time Systems Symposium (RTSS). 292--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Lindblom, J. 2005. A sinusoidal voice over packet coder tailored for the frame-erasure channel. IEEE Trans. Speech Audio Process. 13, 5, 787--798.Google ScholarGoogle ScholarCross RefCross Ref
  58. Lizhong, W., Muqing, W., Lulu, W., and Mojia, L. 2010. An adaptive forward error control method for voice communication. In Proceedings of the 2nd International Conference on Networking and Digital Society (ICNDS'10). Vol. 2. 186--189.Google ScholarGoogle Scholar
  59. Lulu, W., Muqing, W., and Dapeng, W. 2009. Wireless VoIP adaptive source rate control algorithm. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing (WiCom'09). 4788--4791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Malfait, L., Berger, J., and Kastner, M. 2006. P.563—The ITU-T standard for single-ended speech quality assessment. IEEE Trans. Audio, Speech, Lang. Process. 14, 6, 1924--1934. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Manousos, M., Apostolacos, S., Grammatikakis, I., Mexis, D., Kagklis, D., and Sykas, E. 2005. Voice-quality monitoring and control for VoIP. IEEE Internet Comput. 9, 4, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Matta, J., Pépin, C., Lashkari, K., and Jain, R. 2003. A source and channel rate adaptation algorithm for AMR in VoIP using the E-model. In Proceedings of the 13th International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV'03). 92--99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Mazurczyk, W. and Kotulski, Z. 2007. Adaptive VoIP with audio watermarking for improved call quality and security. J. Inform. Assurance Secur. (JIAS) 2, 3, 226--234.Google ScholarGoogle Scholar
  64. McGovern, P., Murphy, S., and Murphy, L. 2006a. Addressing the link adaptation problem for VoWLAN using codec adaptation. In Proceedings of the 49th IEEE Global Telecommunications Conference (GlobeCom'06). 1--6.Google ScholarGoogle Scholar
  65. McGovern, P., Murphy, S., and Murphy, L. 2006b. Protection against link adaptation for VoWLAN. In Proceedings of the 15th IST Mobile and Wireless Communications Summit.Google ScholarGoogle Scholar
  66. Mens, T., Buckley, J., Zenger, M., and Rashid, A. 2003. Towards a taxonomy of software evolution. In Proceedings of the 2nd International Workshop on Unanticipated Software Evolution (ETAPS).Google ScholarGoogle Scholar
  67. Mkwawa, I.-H., Jammeh, E., Sun, L., and Ifeachor, E. C. 2010. Feedback-free early VoIP quality adaptation scheme in next generation networks. In Proceedings of the 53rd IEEE Global Communications Conference (GlobeCom'10). 1--5.Google ScholarGoogle Scholar
  68. Mohamed, S., Cervantes-Pérez, F., and Afifi, H. 2001. Integrating networks measurements and speech quality subjective scores for control purposes. In Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies (InfoCom'01). Vol. 2. 641--649.Google ScholarGoogle Scholar
  69. Möller, S., Wältermann, M., Lewcio, B., Kirschnick, N., and Vidales, P. 2009. Speech quality while roaming in next generation networks. In Proceedings of the 44th IEEE International Conference on Communications (ICC'09). 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Moura, N. T., Vianna, B. A., Albuquerque, C. V. N., Rebello, V. E. F., and Boeres, C. 2007. MOS-based rate adaption for VoIP sources. In Proceedings of the 42nd IEEE International Conference on Communications (ICC'07). 628--633.Google ScholarGoogle Scholar
  71. Müller, H., Kienle, H. M., and Stege, U. 2009. Autonomic computing now you see it, now you don't. In Proceedings of the Software Engineering. Lecture Notes in Computer Science, vol. 5413, Springer, 32--54.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Müller, H., Pezzè, M., and Shaw, M. 2008. Visibility of control in adaptive systems. In Proceedings of the 2nd International Workshop on Ultra-Large-Scale Software-Intensive Systems (ULSSIS'08). 23--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Myakotnykh, E. S. and Thompson, R. A. 2009. Adaptive rate voice over IP quality management algorithm. Int. J. Adv. Telecomm. 2, 2, 98--110.Google ScholarGoogle Scholar
  74. Nagireddi, S. 2008. VoIP Voice and Fax Signal Processing. John Wiley & Sons, Hoboken, NJ.Google ScholarGoogle Scholar
  75. Narbutt, M., Kelly, A., Murphy, L., and Perry, P. 2005. Adaptive VoIP playout scheduling: Assessing user satisfaction. IEEE Internet Comput. 9, 18--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Ng, S. L., Hoh, S., and Singh, D. 2005. Effectiveness of adaptive codec switching VoIP application over heterogeneous networks. In Proceedings of the 2nd International Conference on Mobile Technology, Applications and Systems. 1--7.Google ScholarGoogle Scholar
  77. Ngamwongwattana, B. 2007. Sync & sense enabled adaptive packetization VoIP. Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, PA.Google ScholarGoogle Scholar
  78. Ngamwongwattana, B. 2008. Effect of packetization on VoIP performance. In Proceedings of the 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON'08). Vol. 1. 373--376.Google ScholarGoogle ScholarCross RefCross Ref
  79. Oliveira, K. K. C., Kelner, J., Sadok, D., and Nóbrega, O. 2003. Avaliação de um algoritmo adaptativo de transmissão de voz em redes IP com QoS. In Proceedings of the 21th Brazilian Symposium on Computer Networks (XXI SBRC). 425--440.Google ScholarGoogle Scholar
  80. Padhye, C., Christensen, K. J., and Moreno, W. 2000. A new adaptive FEC loss control algorithm for voice over IP applications. In Proceedings of the 19th IEEE International Performance, Computing, and Communications Conference (IPCCC'00). 307--313.Google ScholarGoogle Scholar
  81. Perkins, C., Hodson, O., and Hardman, V. 1998. A survey of packet loss recovery techniques for streaming audio. IEEE Netw. 12, 5, 40--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Qiao, Z., Sun, L., Heilemann, N., and Ifeachor, E. C. 2004. A new method for VoIP quality of service control use combined adaptive sender rate and priority marking. In Proceedings of the 39th IEEE International Conference on Communications (ICC'04). 1473--1477.Google ScholarGoogle Scholar
  83. Raake, A. 2006. Speech Quality of VoIP: Assessment and Prediction. John Wiley & Sons, Chichester, U.K. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Rabassa, A., St-Hilaire, M., Lung, C.-H., Lambadaris, I., Goel, N., and Zaman, M. 2010. New speech traffic background simulation models for realistic VoIP network planning. In Proceedings of the 13th International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). 364--371.Google ScholarGoogle Scholar
  85. Roychoudhuri, L. and Al-Shaer, E. S. 2004. Adaptive rate control for real-time packet audio based on loss prediction. In Proceedings of the 47th IEEE Global Telecommunications Conference (GlobeCom'04). Vol. 2. 634--638.Google ScholarGoogle Scholar
  86. Roychoudhuri, L. and Al-Shaer, E. S. 2008. Autonomic QoS optimization of real-time Internet audio using loss prediction and stochastic control. In Proceedings of the 11th International IFIP/IEEE Network Operations and Management Symposium (NOMS'08).Google ScholarGoogle Scholar
  87. Sabrina, F. and Valin, J.-M. 2008. Adaptive rate control for aggregated VoIP traffic. In Proceedings of the 51st IEEE Global Communications Conference (GlobeCom'08). 1--6.Google ScholarGoogle Scholar
  88. Salehie, M. and Tahvildari, L. 2009. Self-adaptive software: Landscape and research challenges. ACM Trans. Autonom. Adapt. Syst. (TAAS) 4, 2, 1--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. 2003. RTP: A transport protocol for real-time applications. Request for Comments (RFC) 3550. http://tools.ietf.org/html/rfc 3550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Seo, J. W., Woo, S. J., and Bae, K. S. 2001. A study on the application of an AMR speech codec to VoIP. In Proceedings of the 26th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'01). Vol. 3. 1373--1376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Servetti, A. and Martin, J. C. D. 2003. Adaptive interactive speech transmission over 802.11 wireless LANs. In Proceedings of the 1st IEEE International Workshop on DSP in Mobile and Vehicular Systems.Google ScholarGoogle Scholar
  92. Sfairopoulou, A., Bellalta, B., Macián, C., and Oliver, M. 2011. A comparative survey of adaptive codec solutions for VoIP over multirate WLANs: A capacity versus quality performance trade-off. EURASIP J. Wireless Commun. Netw. 2011, 1--13.Google ScholarGoogle ScholarCross RefCross Ref
  93. Sfairopoulou, A., Macián, C., and Bellalta, B. 2007. Dynamic measurement-based codec selection for VoIP in multirate IEEE 802.11 WLANs. In Proceedings of the 8th COST 290 Management Committee Meeting. 1--21.Google ScholarGoogle Scholar
  94. Shannon, C. E. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.Google ScholarGoogle Scholar
  95. Shaw, M. 1995. Beyond objects: A software design paradigm based on process control. ACM SIGSOFT Softw. Eng. Notes 20, 1, 27--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Skype. 2011. SILK: Super Wideband Audio Codec. https://developer.skype.com/silk.Google ScholarGoogle Scholar
  97. Stankiewicz, R., Cholda, P., and Jajszczyk, A. 2011. QoX: What is it really? IEEE Commun. Mag. 49, 4, 148--158.Google ScholarGoogle ScholarCross RefCross Ref
  98. Sun, L. and Ifeachor, E. 2004. New models for perceived voice quality prediction and their applications in playout buffer optimization for VoIP networks. In Proceedings of the 39th IEEE International Conference on Communications (ICC'04). 1478--1483.Google ScholarGoogle Scholar
  99. Takahashi, A., Yoshino, H., and Kitawaki, N. 2004. Perceptual QoS assessment technologies for VoIP. IEEE Commun. Mag. 42, 7, 28--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Tebbani, B. and Haddadou, K. 2008. Codec-based adaptive QoS control for VoWLAN with differentiated services. In Proceedings of the 1st IFIP Wireless Days (WD'08). 1--5.Google ScholarGoogle Scholar
  101. Trad, A., Ni, Q., and Afifi, H. 2004. Adaptive VoIP transmission over heterogeneous wired/wireless networks. In Proceedings of the 2nd International Workshop on Multimedia Interactive Protocols and Systems (MIPS'04). 25--36.Google ScholarGoogle Scholar
  102. Tu, C., Liu, X., and Wu, Z. 2009. A research on adaptive QoS technology. In Proceedings of the 1st International Conference on Future Computer and Communication (ICFCC'09). 164--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Tüysüz, M. F. and Mantar, H. A. 2010. A cross layer QoS algorithm to improve wireless link throughput and voice quality over multi-rate WLANs. In Proceedings of the 6th International Wireless Communications and Mobile Computing Conference (IWCMC'10). 209--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Valin, J.-M., Vos, K., and Terriberry, T. B. 2011. IETF Opus Interactive Audio Codec. http://opus-codec.org/.Google ScholarGoogle Scholar
  105. Valle, R., Carvalho, L. S. G., Aguiar, R. B., Mota, E., and Freitas, D. 2010. Dynamical management of dejitter buffers based on speech quality. In Proceedings of the 15th IEEE Symposium on Computers and Communications (ISCC'10). 56--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Wah, B. W. and Sat, B. 2009. The design of VoIP systems with high perceptual conversational quality. J. Multimedia 4, 2, 49--62.Google ScholarGoogle ScholarCross RefCross Ref
  107. Wältermann, M., Lewcio, B., Vidales, P., and Möller, S. 2008. A technique for seamless VoIP-codec switching in next generation networks. In Proceedings of the 43rd IEEE International Conference on Communications (ICC'08). 1772--1776.Google ScholarGoogle Scholar
  108. Yuhe, S. and Jie, X. 2009. New Solutions of VoIP on multi-hop wireless network. In Proceedings of the IITA International Conference on Control, Automation and Systems Engineering (CASE). 199--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Zhang, H., Zhao, J., and Yang, O. 2008. Adaptive rate control for VoIP in wireless ad hoc networks. In Proceedings of the 43rd IEEE International Conference on Communications (ICC'08). 3166--3170.Google ScholarGoogle Scholar
  110. Zhou, J., She, X., and Chen, L. 2010. Source and channel coding adaptation for optimizing VoIP quality of experience in cellular systems. In Proceedings of the 11th IEEE Wireless Communications and Networking Conference (WCNC'10). 1--6.Google ScholarGoogle Scholar

Index Terms

  1. Survey on application-layer mechanisms for speech quality adaptation in VoIP

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 45, Issue 3
          June 2013
          575 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/2480741
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 July 2013
          • Accepted: 1 March 2012
          • Revised: 1 August 2011
          • Received: 1 March 2011
          Published in csur Volume 45, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader