skip to main content
10.1145/2483977.2483983acmconferencesArticle/Chapter ViewAbstractPublication PagesmmsysConference Proceedingsconference-collections
research-article

Aggregate power consumption modeling of live video streaming systems

Published:28 February 2013Publication History

ABSTRACT

Power consumption of video streaming systems has become a major concern, especially in battery-powered devices, such as video sensors. Power is usually dissipated in each one of the major phases of the streaming process: capturing, encoding, and transmission. This paper develops models for power consumption in each of these phases and validates them with extensive experiments, focusing primarily on H.264 video encoding. For comparative purposes, we also study MJPEG and MPEG-4 video codecs. In addition, we analyze the impacts of the main H.264 video compression parameters on power consumption and bitrate. These parameters include quantization parameter, number of reference frames, motion estimation (ME) range, and ME algorithm.

References

  1. Atheros Communications. Power consumption and energy efficiency comparisons of WLAN products. Tech. Report, available at www.atheros.com, 2004.Google ScholarGoogle Scholar
  2. M. Bhardwaj and A. P. Chandrakasan. Bounding the lifetime of sensor networks via optimal role assignments. In Proceedings of IEEE Infocom 2002, pages 1587--1596, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  3. C. Blanch, T. Gan, A. Dejonghe, and B. Masschelein. Cross-layer optimization for the scalable video codec over WLAN. In Proceedings of 17th International Packet Video Workshop, May 2009.Google ScholarGoogle ScholarCross RefCross Ref
  4. T. Burd and R. Broderson. Processor design for portable systems. VLSI Signal Process, 13(2):203--222, Aug 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Dupret, J. Klein, and A. Nshare. A programmable vision chip for CNN based algorithms. In Proceedings of IEEE International Workshop Chip for Cellular Neural Networks and Their Applications Proceedings, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  6. T. Ebrahimi and C. Horne. Mpeg-4 natural video coding: An overview. Signal Processing: Image Communication, 1(15):365--385, September 2000.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Eleftheriadis and D. Anastassiou. Constrained and general dynamic rate shaping of compressed digital video. In Proceedings of the 1995 International Conference on Image Processing, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Elouardi, S. Bouaziz, A. Dupret, L. Lacassagne, J. O. Klein, and R. Reynaud. A smart sensor-based vision system: implementation and evaluation. Journal of Physics D: Applied Physics, 39(8), Nov. 2006.Google ScholarGoogle ScholarCross RefCross Ref
  9. B. Erol, F. Kossentini, and H. Alnuweiri. Efficient coding and mapping algorithms for software-only real-time video coding at low bit rates. CirSysVideo, 10(6):843--856, September 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu. Power-rate-distortion analysis for wireless video communication under energy constraints. IEEE Transaction Circuits System Video Technology, 15(5):645--658, May 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Z. He and D. Wu. Resource allocation and performance analysis of wireless video sensors. IEEE Transactions on Circuits and Systems for Video Technology, 16(5):590--599, May 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Kim and C.-C. J. Kuo. Feature-based intra-/intercoding mode selection for H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 17(4):441--453, April 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Kim, D. Kim, and J. Jeong. Complexity reduction algorithm for intra mode selection in H.264/AVC video coding. Advanced Concepts for Intelligent Vision Systems (ACIVS'06), 4179:454--465, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Kim, J. Kim, G. Kim, and C.-M. Kyoung. Power-rate-distortion modeling for energy minimization of portable video encoding devices. Aug. 2011.Google ScholarGoogle Scholar
  15. J. Kim, Y. Wang, and S. Chang. Content-adaptive utility-based video adaptation. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), pages 281--284, July 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Kim and Y. Altunbasak. Optimal dynamic rate shaping for compressed video streaming. In Proceedings of the First International Conference on Networking-Part 2 (ICN), pages 786--794, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. W. Lin, K. Panusopone, D. M. Baylon, M.-T. Sun, Z. Chen, and H. Li. A fast sub-pixel motion estimation algorithm for H.264/AVC video coding. In IEEE Transactions on Circuits and Systems for Video Technology, VOL. 21, NO. 2, February 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. X. Lu, T. Fernaine, and Y. Wang. Modelling power consumption of a h.263 video encoder. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), pages 77--80, 2004.Google ScholarGoogle Scholar
  19. I. Pao and M. Sun. Statistical computation of discrete cosine transform in video encoders. In Journal of Visual Communication and Image Representation, June 1998.Google ScholarGoogle Scholar
  20. W. Pu, Y. Lu, and F. Wu. Joint power-distortion optimization on devices with MPEG-4 AVC/H.264 codec. In Proceedings of IEEE International Conference on Communications (ICC 2006).Google ScholarGoogle ScholarCross RefCross Ref
  21. T. Rappaport. Wireless Communications: Principles and Practice. New Jersey: Prentice-Hall, Inc., 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. I. E. G. Richardson. The H.264 Advanced Video Compression Standrad, second edition, WILEY, Published Online. Vcodex Limited, UK, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Shafique, B. Molkenthin, and J. Henkel. An HVS-based adaptive computational complexity reduction scheme for H.264/AVC video encoder using prognostic early mode exclusion. In Proceedings of Design, Automation and Test in Europe Conference and Exhibition, pages 1713--1718, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. D. Micheli. Dynamic voltage scaling and power management for portable systems. In Proceedings of the 38th annual Design Automation Conference, pages 524--529, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. L. Su, Y. Lu, F. Wu, S. Li, and W. Gao. Complexity-constrained H.264 video encoding. IEEE Transactions on Circuits and Systems for Video Technology, 19(4):477--490, April 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. H. Tan, W. S. Lee, J. Y. Tham, S. Rahardja, and K. M. Lye. Complexity scalable H.264/AVC encoding. IEEE Transactions on Circuits and Systems for Video Technology, 20(9):2010 1271, Septemper 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. M. Tourapis, O. C. Au, and M. L. Liou. Predictive motion vector field adaptive search technique (PMVFAST) -- enhancing block based motion estimation. In Proceedings of Visual Communications and Image Processing Conference, 2001.Google ScholarGoogle Scholar
  28. A. M. Tourapis, F. W. B, and S. L. B. Motion vector prediction with reference frame consideration. In Proceedings of Applications of Digital Image Processing, pages 440--1217, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Verdant, A. Dupret, H. Mathias, P. Villard, and L. Lacassagne. Low power motion detection with low spatial and temporal resolution for CMOS image sensor. In Proceedings of International Conference on Application-Specific Systems, Architectures and Processors, pages 12--17, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Y. Wang, Y. Zhou, and H. Yang. Early detection method of all-zero integer transform coefficients. IEEE Transactions on Consumer Electronics, 50(3):923--928, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of the H.264/AVC video coding standard. IEEE Transaction on Circuits and Systems for Video Technology, 13(7), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. Xu and Y. He. Improvements on fast motion estimation strategy for H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 18(3), March 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. Zhu, X. Lin, L.-P. Chau, K. pang Lim, H. ann Ang, and C. yin Ong. A novel hexagon-based search algorithm for fast block motion estimation. In Proceedings of Acoustics, Speech, and Signal Processing, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Aggregate power consumption modeling of live video streaming systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MMSys '13: Proceedings of the 4th ACM Multimedia Systems Conference
      February 2013
      304 pages
      ISBN:9781450318945
      DOI:10.1145/2483977
      • General Chair:
      • Carsten Griwodz

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 February 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MMSys '13 Paper Acceptance Rate15of63submissions,24%Overall Acceptance Rate176of530submissions,33%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader