skip to main content
10.1145/2485895.2485899acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Modeling and animating myriapoda: a real-time kinematic/dynamic approach

Published:19 July 2013Publication History

ABSTRACT

Unlike two, four, six, and eight legged animals, Myriapoda---i.e., centipedes, millipedes, etc.---have been largely overlooked in the computer graphics literature. We present an artificial life framework for modeling these arthropods and animating their locomotive behavior over regular or irregular surfaces in real time with compelling physical and biological realism. Our hybrid approach combines kinematic and dynamic simulation, as well as a decentralized, distributed leg control system whose emergent behavior is suitable for animating simulated myriapoda of different morphologies with the characteristically vivid leg wave patterns of their biological counterparts. The simulated creature's antennae sense its virtual environment and the sensory information guides its adaptive behaviors, including obstacle avoidance and foraging.

Skip Supplemental Material Section

Supplemental Material

p203-fang.mp4

mp4

50.1 MB

References

  1. Baraff, D., and Witkin, A. P. 1997. Partitioned dynamics. Tech. Rep. CMU-RI-TR-97-33, The Robotics Institute, Canegie-Mellon University, Pittsburgh, PA.Google ScholarGoogle Scholar
  2. Baraff, D. 1997. An introduction to physically based modeling: Rigid body simulation I---Unconstrained rigid body dynamics. In An Introduction to Physically Based Modeling, SIGGRAPH '97 Course Notes, 97.Google ScholarGoogle Scholar
  3. Beer, R. D., Chiel, H., Quinn, R., and Espenschied, K. 1992. A distributed neural network architecture for hexapod robot locomotion. Neural Computation 4, 6, 356--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Beer, R. D. 1990. Intelligence as adaptive behavior: An experiment in computational neuroethology. Academic Press, San Diego, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Braitenberg, V. 1986. Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, MA.Google ScholarGoogle Scholar
  6. Cenydd, L. a., and Teahan, B. 2013. An embodied approach to arthropod animation. Computer Animation and Virtual Worlds 24, 65--83.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chen, D. T., and Zeltzer, D. 1992. Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. Computer Graphics (Proc. ACM SIGGRAPH 92) 26, 89--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Coros, S., Karpathy, A., Jones, B., Reveret, L., and van de Panne, M. 2011. Locomotion skills for simulated quadrupeds. ACM Transactions on Graphics 30, 59:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Transactions on Graphics 31, 69:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cruse, H., Kindermann, T., Schumm, M., Dean, J., and Schmitz, J. 1998. Walknet: A biologically inspired network to control six-legged walking. Neural Networks 11, 1435--1447. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cruse, H., Dean, J., Dürr, V., Kindermann, T., Schmitz, J., and Schumm, M. 2000. Control of hexapod walking: A decentralized solution based on biological data. In Proc. 4th Int. Conf. on Climbing and Walking Robots, 13, 1--10.Google ScholarGoogle Scholar
  12. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. ACM SIGGRAPH 01, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Full, R. J., and Tu, M. S. 1991. Mechanics of a rapid running insect: Two-, four- and six-legged locomotion. Journal of Experimental Biology 156, 215--231.Google ScholarGoogle Scholar
  14. Gibson, D. P., Oziem, D. J., Dalton, C. J., and Campbell, N. W. 2007. A system for the capture and synthesis of insect motion. Graphical Models 69, 231--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Golubitsky, M., Stewart, I., Buono, P.-L., and Collins, J. 1998. A modular network for legged locomotion. Physica D: Nonlinear Phenomena 115, 56--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Grzeszczuk, R., and Terzopoulos, D. 1995. Automated learning of muscle-actuated locomotion through control abstraction. In Proc. ACM SIGGRAPH 95, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proc. ACM SIGGRAPH 95, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hoffman, K., and Wood, R. 2011. Myriapod-like ambulation of a segmented microrobot. Autonomous Robots 31, 103--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Holmes, P., Full, R. J., Koditschek, D., and Guckenheimer, J. 2006. The dynamics of legged locomotion: Models, analyses, and challenges. SIAM Review 48, 207--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. 2007. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416--1420.Google ScholarGoogle ScholarCross RefCross Ref
  21. Inagaki, S., Yuasa, H., and Arai, T. 2003. CPG model for autonomous decentralized multi-legged robot system generation and transition of oscillation patterns and dynamics of oscillators. Robotics and Autonomous Systems 44, 171--179.Google ScholarGoogle ScholarCross RefCross Ref
  22. Inagaki, S., Niwa, T., and Suzuki, T. 2011. Decentralized control of centipede-like multi-legged robots with passive intersegment joints based on follow-the-contact-point gait control. Transactions of the Society of Instrument and Control Engineers 47, 282--290.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. Computer Graphics (Proc. ACM SIGGRAPH 90) 24, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kimura, H., Fukuoka, Y., and Cohen, A. H. 2007. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. International Journal of Robotics Research 26, 475--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Transactions on Graphics 30, 4, 37:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. McKenna, M., and Zeltzer, D. 1990. Dynamic simulation of autonomous legged locomotion. Computer Graphics (Proc. ACM SIGGRAPH 90) 24, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mellen, N., Kiemel, T., and Cohen, A. H. 1995. Correlational analysis of fictive swimming in the lamprey reveals strong functional intersegmental coupling. Journal of Neurophysiology 73, 100--1030.Google ScholarGoogle ScholarCross RefCross Ref
  28. Miller, G. S. P. 1988. The motion dynamics of snakes and worms. Computer Graphics (Proc. ACM SIGGRAPH 88) 22, 169--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Odashima, T., Yuasa, H., and Ito., M. 1998. The autonomous decentralized myriapod locomotion robot which is consist of homogeneous subsystems. Journal of the Robotic Society of Japan 16, 81--88.Google ScholarGoogle ScholarCross RefCross Ref
  30. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. Computer Graphics (Proc. ACM SIGGRAPH 91) 25, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Raibert, M. 2008. Bigdog, the rough-terrain quadruped robot. In Proc. 17th International Federation of Automatic Control World Congress, 10822--10825.Google ScholarGoogle ScholarCross RefCross Ref
  32. Ruppert, E. E., Fox, R. S., and Barnes, R. D. 2003. Invertebrate Zoology, 7th Ed. Cengage Learning.Google ScholarGoogle Scholar
  33. Saranli, U., Buehler, M., and Koditschek, D. E. 2001. Rhex: A simple and highly mobile hexapod robot. International Journal of Robotics Research, 616--631.Google ScholarGoogle Scholar
  34. Shinar, T., Schroeder, C., and Fedkiw, R. 2008. Two-way coupling of rigid and deformable bodies. In Symposium on Computer Animation, 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Symposium on Computer Animation, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sims, K. 1994. Evolving 3D morphology and behavior by competition. Artificial Life 1, 4, 353--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Skrba, L., Reveret, L., Hétroy, F., Cani, M.-P., and O'Sullivan, C. 2008. Quadruped animation. In Eurographics State-of-the-Art Report.Google ScholarGoogle Scholar
  38. Stomakhin, A., Howes, R., Schroeder, C., and Teran, J. M. 2012. Energetically consistent invertible elasticity. In Symposium on Computer Animation, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Symposium on Computer Animation, 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Terzopoulos, D. 1999. Artificial life for computer graphics. Communications of the ACM 42, 8, 32--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.-Y. 2010. Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Transactions on Visualization and Computer Graphics 16, 325--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tu, X., and Terzopoulos, D. 1994. Artificial fishes: Physics, locomotion, perception, behavior. In Proc. ACM SIGGRAPH 94, 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Van Welbergen, H., Van Basten, B. J. H., Egges, A., Ruttkay, Z. M., and Overmars, M. H. 2010. Real time animation of virtual humans: A trade-off between naturalness and control. Computer Graphics Forum 29, 2530--2554.Google ScholarGoogle ScholarCross RefCross Ref
  44. Wang, J. M., Hamner, S. R., Delp, S. L., and Koltun, V. 2012. Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Transactions on Graphics 31, 25:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Modeling and animating myriapoda: a real-time kinematic/dynamic approach

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SCA '13: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation
        July 2013
        225 pages
        ISBN:9781450321327
        DOI:10.1145/2485895

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SCA '13 Paper Acceptance Rate20of57submissions,35%Overall Acceptance Rate183of487submissions,38%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader