skip to main content
10.1145/2487788.2488055acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Fast centrality-driven diffusion in dynamic networks

Authors Info & Claims
Published:13 May 2013Publication History

ABSTRACT

Diffusion processes in complex dynamic networks can arise, for instance, on data search, data routing, and information spreading. Therefore, understanding how to speed up the diffusion process is an important topic in the study of complex dynamic networks. In this paper, we shed light on how centrality measures and node dynamics coupled with simple diffusion models can help on accelerating the cover time in dynamic networks. Using data from systems with different characteristics, we show that if dynamics is disregarded, network cover time is highly underestimated. Moreover, using centrality accelerates the diffusion process over a different set of complex dynamic networks when compared with the random walk approach. For the best case, in order to cover 80% of nodes, fast centrality-driven diffusion reaches an improvement of 60%, i.e. when next-hop nodes are selected by using centrality measures. Additionally, we also propose and present the first results on how link prediction can help on speeding up the diffusion process in dynamic networks.

References

  1. L. A. Adamic and E. Adar. How to search a social network. Social Networks, 27:187--203, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. I. Alvarez-Hamelin, E. Fleury, A. Vespignani, and A. Ziviani. Complex dynamic networks: Tools and methods (Guest Editorial). Computer Networks, 56(3):967--969, Dec. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. V. Barbera, J. Stefa, A. C. Viana, M. D. de Amorim, and M. Boc. VIP delegation: Enabling VIPs to offload data in wireless social mobile networks. In Proc. of the Int. Conf. on Distributed Computing in Sensor Systems (DCOSS), pages 1--8, Barcelona, Spain, June 2011. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  4. P. Basu, A. Bar-Noy, R. Ramanathan, and M. P. Johnson. Modeling and analysis of time-varying graphs. CoRR, abs/1012.0260, 2010.Google ScholarGoogle Scholar
  5. M. Boguñá, D. Krioukov, and k. claffy. Navigability of Complex Networks. Nature Physics, 5(1):74--80, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1):107--117, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. O. Şimşek and D. Jensen. Navigating networks by using homophily and degree. Proceedings of the National Academy of Sciences, 105(35):12758--12762, Sept. 2008.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Dorogovtsev and J. Mendes. Evolution of Networks: From biological networks to the Internet and WWW. Oxford University Press, Inc., New York, NY, USA, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010. Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Everett and S. Borgatti. Ego network betweenness. Social Networks, 27(1):31--38, Jan. 2005.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Gómez-Gardeñes and V. Latora. Entropy rate of diffusion processes on complex networks. Physcal Review E, 78:065102, Dec 2008.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. A. Guedes, E. S. Silva, A. Ziviani, and K. V. Cardoso. Dynamic labeling in wireless mesh networks. In Proc. of the IEEE Latin-American Conference on Communications (IEEE LATINCOM), Cuenca, Ecuador, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  13. P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519(3):97--125, Oct. 2012.Google ScholarGoogle ScholarCross RefCross Ref
  14. P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: social-based forwarding in delay tolerant networks. In Proc. of the ACM Int. Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages 241--250, Hong Kong, China, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong. Path finding strategies in scale-free networks. Physical Review E, 65:027103, Jan 2002.Google ScholarGoogle ScholarCross RefCross Ref
  16. H. Kim and R. Anderson. Temporal node centrality in complex networks. Physical Review E, 85(2):026107, Feb. 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. M. Kitsak, L. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. Stanley, and H. Makse. Identification of influential spreaders in complex networks. Nature Physics, 6(11):888--893, Aug 2010.Google ScholarGoogle ScholarCross RefCross Ref
  18. L. Kocarev. Network Science: A New Paradigm Shift. IEEE Network, 24(6):6--9, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. V. Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its Applications, 388(6):1007--1023, Mar. 2009.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time. In Proc. of the ACM Int. Conference on Knowledge Discovery in Data Mining (KDD), pages 177--187, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. Lovasz. Random Walks on Graphs: A Survey. Bolyai Society Mathematical Studies, 2:1--46, 1993.Google ScholarGoogle Scholar
  22. R. M. Lukose, L. A. Adamic, A. R. Puniyani, and B. A. Huberman. Search in power-law networks. Physical Review E, 64(4), 2001.Google ScholarGoogle Scholar
  23. A. Mtibaa, M. May, C. Diot, and M. Ammar. PeopleRank: Social opportunistic forwarding. In Proc. of the IEEE INFOCOM, pages 1--5, San Diego, CA, USA, Mar. 2010. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167--256, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Pan and J. Saramäki. Path lengths, correlations, and centrality in temporal networks. Physical Review E, 84(1):1--10, July 2011.Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Rosvall, A. Gronlund, P. Minnhagen, and K. Sneppen. Searchability of networks. Physical Review E, 72(4), Oct 2005.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau. CRAWDAD trace cambridge/haggle/imote/infocom2006 (v. 2009-05-29). Downloaded from http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom2006, May 2009.Google ScholarGoogle Scholar
  28. J. Tang, M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia. Analysing information flows and key mediators through temporal centrality metrics. In Proc. of the Workshop on Social Network Systems (SNS), pages 1--6, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T. W. Valente, K. Coronges, C. Lakon, and E. Costenbader. How correlated are network centrality measures? Connections (Toronto, Ont.), 28(1):16, 2008.Google ScholarGoogle Scholar
  30. A. B. Vieira, A. P. C. da Silva, F. H. Cerqueira, G. Goncalves, and P. Gomes. Sopcast p2p live streaming: Live session traces and analysis. In Proceedings of ACM Multimedia Systems Conference, March 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. K. Wehmuth and A. Ziviani. Distributed assessment of the closeness centrality ranking in complex networks. In 4th Workshop on Simplifying Complex Networks for Practitioners (SIMPLEX), WWW 2012, pages 43--48, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. N. Yoshida. Estimation for diffusion processes from discrete observation. Journal of Multivariate Analysis, 41(2):220--242, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Yuan and H. Ma. Hug: Human gathering point based routing for opportunistic networks. In Proc. of the IEEE Wireless Communications and Networking Conference (WCNC), pages 3024--3029, Paris, France, Apr. 2012. IEEE.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Fast centrality-driven diffusion in dynamic networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        WWW '13 Companion: Proceedings of the 22nd International Conference on World Wide Web
        May 2013
        1636 pages
        ISBN:9781450320382
        DOI:10.1145/2487788

        Copyright © 2013 Copyright is held by the International World Wide Web Conference Committee (IW3C2).

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 May 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        WWW '13 Companion Paper Acceptance Rate831of1,250submissions,66%Overall Acceptance Rate1,899of8,196submissions,23%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader