skip to main content
10.1145/2488388.2488434acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Mining expertise and interests from social media

Published: 13 May 2013 Publication History

Abstract

The rising popularity of social media in the enterprise presents new opportunities for one of the organization's most important needs--expertise location. Social media data can be very useful for expertise mining due to the variety of existing applications, the rich metadata, and the diversity of user associations with content. In this work, we provide an extensive study that explores the use of social media to infer expertise within a large global organization. We examine eight different social media applications by evaluating the data they produce through a large user survey, with 670 enterprise social media users. We distinguish between two semantics that relate a user to a topic: expertise in the topic and interest in it and compare these two semantics across the different social media applications.

References

[1]
Abel, F., Gao, Q., Houben, G.J., & Tao K. 2011. Analyzing user modeling on twitter for personalized news recommendations. Proc. UMAP '11, 1--12.
[2]
Adamic, L.A., Zhang J., Bakshy, E., & Ackerman, M.S. 2008. Knowledge sharing and yahoo answers: everyone knows something. Proc. WWW '08, 665--674.
[3]
Amitay, E., Carmel, D., Har'el, N., Soffer, A., Golbandi, N., Ofek-Koifman, S., & Yogev, S. 2009. Social search and discovery using a unified approach. Proc. HT '09, 199--208.
[4]
Balog, K., Azzopardi, L., & de Rijke, M. 2006. Formal models for expert finding in enterprise corpora. Proc. SIGIR '06, 43--50.
[5]
Balog, K. & de Rijke M. 2006. Finding experts and their details in e-mail corpora. Proc. WWW '06, 1035--1036.
[6]
Balog, K., de Rijke, M., & Weerkamp, W. 2008. Bloggers as experts: feed distillation using expert retrieval models. Proc. SIGIR '08, 753--754.
[7]
Becerra-Fernandez, I. 2000. Facilitating the online search of experts at NASA using expert seeker people-finder. Proc. PAKM '00.
[8]
Buffa, M. 2006. Intranet wikis. IntraWebs Workshop, WWW '06.
[9]
Campbell, C.S., Maglio, P.P., Cozzi A., & Dom, B. 2003. Expertise identification using email communications. Proc. CIKM '03, 528--531.
[10]
Claypool, M., Le, P., Wased, M., & Brown, D. 2001. Implicit Interest Indicators. Proc. IUI '01, 33--40.
[11]
Craswell, N., de Vries, A., & Soboroff, I. Overview of the trec-2005 enterprise track. Proc. TREC '05, 199--205.
[12]
Ehrlich K. & Shami, N.S. 2008. Searching for expertise. Proc. CHI '08, 1093--1096.
[13]
Farrell, S., & Lau T. 2006. Fringe Contacts: people tagging for the enterprise. Workshop on Collaborative Web Tagging, WWW '06.
[14]
Gilbert, E. & Karahalios, K. 2009. Predicting tie strength with social media. Proc. CHI '09, 211--220.
[15]
Guy, I., Jacovi, M., Meshulam, N., Ronen, I., & Shahar, E. 2008. Public vs. private: comparing public social network information with email. Proc. CSCW '08, 393--402.
[16]
Guy, I., Ur, S., Ronen I., Weber, S., & Oral, T. 2012. Best faces forward: a large-scale study of people search in the enterprise. Proc. CHI '12, 1775--1784.
[17]
Herlocker, J. L., Konstan, J.A., & Riedl, J. 2000. Explaining collaborative filtering recommendations. Proc. CSCW '00, 241--250.
[18]
IBM Connections -- Social Software for Business: http://www.ibm.com/software/lotus/products/connections
[19]
Jarvelin, K. & Kakalainen, J. 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20, 4 (October 2002), 422--446.
[20]
Kardan, A., Garakani, M., & Bahrani, B. 2010. A method to automatically construct a user knowledge model in a forum environment. Proc. SIGIR '10, 717--718.
[21]
Kolari, P., Finin, T., Lyons, K., & Yesha, Y. 2008. Expert search using internal corporate blogs. Workshop on Future Challenges in Expertise Retrieval, SIGIR '08, 2--5.
[22]
Lerman, K. 2007. Social Networks and Social Information Filtering on Digg. Proc. ICWSM '07.
[23]
Li X., Guo, L., & Zhao, E.Y. 2008. Tag-based social interest discovery. Proc. WWW '08, 675--684.
[24]
Luo, Z.Q. & Tseng, P. 1992. On the convergence of the coordinate descent method for convex differentiable minimization. J. Optim. Theory Appl. 72, 1 (Jan. 1992), 7--35.
[25]
Macdonald, C. & Ounis I. 2006. Voting for candidates: adapting data fusion techniques for an expert search task. Proc. CIKM '06, 387--396.
[26]
Macdonald, C., Hannah, D., & Ounis I. 2008. High quality expertise evidence for expert search. Proc. ECIR '08, 283--295.
[27]
Manning, C., Raghavan, P., & Schtze, H. 2008. Introduction to information retrieval. Cambridge University Press.
[28]
Maron, M.E., Curry, S. & Thompson, P.: An inductive search system: theory, design, and implementation. IEEE Trans. on Systems, Man and Cybernetics 16, 1 (1986) 21--28.
[29]
McCandless, M., Hatcher, E., & Gospodneti, O. 2010. Lucene in action, 2nd edition. Manning Publications Co.
[30]
McDonald, D.W. & Ackerman, M.S. 2000. Expertise recommender: a flexible recommendation system and architecture. Proc. CSCW '00, 231--240.
[31]
Millen, D.R., Feinberg, J., & Kerr, B. 2006. Dogear: social bookmarking in the enterprise. Proc. CHI '06, 111--120.
[32]
Muller, M., Ehrlich, K., Matthews, T., Perer, A., Ronen, I., & Guy, I. Diversity among enterprise online communities: collaborating, teaming, and innovating through social media. Proc. CHI '12, 2815--2824.
[33]
Noll, M.G., Yeung, A.C., Gibbins, N., Meinel, C., & Shadbolt, N. 2009. Telling experts from spammers: expertise ranking in folksonomies. Proc. SIGIR '09, 612--619.
[34]
Pohs W., Pinder, G., Dougherty, C., & White, M. 2001. The lotus knowledge discovery system: tools and experiences. IBM Systems Journal 40,4, (2001), 956--966.
[35]
Qiu, F. & Cho, J. 2006. Automatic identification of user interest for personalized search. Proc. WWW '06, 727--736.
[36]
Reichling, T. & Wulf, V. 2009. Expert recommender systems in practice: evaluating semi-automatic profile generation. Proc. CHI '09, 59--68.
[37]
Ronen, I., Shahar, E., Ur, S., Uziel, E., Yogev, S., Zwerdling, N., Carmel, D., Guy, I., Har'el, N., & Ofek-Koifman, S. 2009. Social networks and discovery in the enterprise (SaND). Proc. SIGIR '09, 836.
[38]
Sen, S., Vig, J., & Riedl, J. 2009. Tagommenders: Connecting users to items through tags. Proc. WWW '09, 671--680.
[39]
Serdyukov, P., Rode, H., & Hiemstra, D. 2008. Modeling multi-step relevance propagation for expert finding. Proc. CIKM '08, 1133--1142.
[40]
Serdyukov, P. & Hiemstra, D. 2008. Being omnipresent to be almighty: the importance of global web evidence for organizational expert finding. Workshop on Future Challenges in Expertise Retrieval, SIGIR '08, 17--24.
[41]
Shami, N.S., Muller M.J., & Millen, D.R. 2011. Browse and discover: social file sharing in the enterprise. Proc. CSCW '11, 295--304.
[42]
Vivacqua, A. & Lieberman, H. 2000. Agents to assist in finding help. Proc. CHI '00, 65--72.
[43]
Xiao, J., Zhang, Y., Jia, X., & Li, T. 2001. Measuring similarity of interests for clustering web-users. Proc. ADC '01, 107--114.
[44]
Yardi, S., Golder, S. A., and Brzozowski, M. J. 2009. Blogging at work and the corporate attention economy. Proc. CHI '09, 2071--2080.
[45]
Yiman-Seid, D. & Kobsa, A. 2003. Expert-finding systems for organizations: Problem and domain analysis and the DEMOIR approach. JOCEC 13, 1 (2003), 1--24.
[46]
Zhang, J., Qu, Y., Cody, J., & Wu, Y. 2010. A case study of micro-blogging in the enterprise: use, value, and related issues. Proc. CHI '10, 123--132.
[47]
Zhang, J., Ackerman, M.S., & Adamic, L. 2007. Expertise networks in online communities: structure and algorithms. Proc. WWW '07, 221--230.

Cited By

View all
  • (2024)Driving Innovation Ecosystem Transformation via Digital Platforms and Knowledge Co-CreationAI and Data Analytics Applications in Organizational Management10.4018/979-8-3693-1058-8.ch005(80-107)Online publication date: 16-Feb-2024
  • (2023)ComLittee: Literature Discovery with Personal Elected Author CommitteesProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581371(1-20)Online publication date: 19-Apr-2023
  • (2023)Influence- and Interest-Based Worker Recruitment in Crowdsourcing Using Online Social NetworksIEEE Transactions on Network and Service Management10.1109/TNSM.2022.321768920:2(1924-1936)Online publication date: Jun-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '13: Proceedings of the 22nd international conference on World Wide Web
May 2013
1628 pages
ISBN:9781450320351
DOI:10.1145/2488388

Sponsors

  • NICBR: Nucleo de Informatcao e Coordenacao do Ponto BR
  • CGIBR: Comite Gestor da Internet no Brazil

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 May 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. enterprise
  2. enterprise 2.0
  3. expert finding
  4. expert recommendation
  5. expert search
  6. expertise location
  7. interest mining
  8. people search
  9. social business
  10. social computing
  11. social media
  12. social software
  13. web 2.0

Qualifiers

  • Research-article

Conference

WWW '13
Sponsor:
  • NICBR
  • CGIBR
WWW '13: 22nd International World Wide Web Conference
May 13 - 17, 2013
Rio de Janeiro, Brazil

Acceptance Rates

WWW '13 Paper Acceptance Rate 125 of 831 submissions, 15%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)28
  • Downloads (Last 6 weeks)2
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Driving Innovation Ecosystem Transformation via Digital Platforms and Knowledge Co-CreationAI and Data Analytics Applications in Organizational Management10.4018/979-8-3693-1058-8.ch005(80-107)Online publication date: 16-Feb-2024
  • (2023)ComLittee: Literature Discovery with Personal Elected Author CommitteesProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581371(1-20)Online publication date: 19-Apr-2023
  • (2023)Influence- and Interest-Based Worker Recruitment in Crowdsourcing Using Online Social NetworksIEEE Transactions on Network and Service Management10.1109/TNSM.2022.321768920:2(1924-1936)Online publication date: Jun-2023
  • (2023)Research On Method Of User Preference Analysis Based on Entity Similarity and Semantic Assessment2023 8th International Conference on Signal and Image Processing (ICSIP)10.1109/ICSIP57908.2023.10271084(1029-1033)Online publication date: 8-Jul-2023
  • (2022)Reviewer recommendation method for scientific research proposals: a case for NSFCScientometrics10.1007/s11192-022-04389-4127:6(3343-3366)Online publication date: 14-May-2022
  • (2021)DIGDUG: Scalable Separable Dense Graph Pruning and Join Operations in MapReduceIEEE Transactions on Big Data10.1109/TBDATA.2020.29836507:6(930-951)Online publication date: 1-Dec-2021
  • (2021)Reciprocal Recommender Systems: Analysis of state-of-art literature, challenges and opportunities towards social recommendationInformation Fusion10.1016/j.inffus.2020.12.00169(103-127)Online publication date: May-2021
  • (2021)Research topics and trends of the hashtag recommendation domainScientometrics10.1007/s11192-021-03874-6126:4(2689-2735)Online publication date: 1-Apr-2021
  • (2019)Effective, Privacy-First Display AdvertisingCyber Law, Privacy, and Security10.4018/978-1-5225-8897-9.ch014(267-291)Online publication date: 2019
  • (2019)Expert Finding Systems: A Systematic ReviewApplied Sciences10.3390/app92042509:20(4250)Online publication date: 11-Oct-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media