skip to main content
10.1145/2488388.2488500acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Uncovering locally characterizing regions within geotagged data

Published:13 May 2013Publication History

ABSTRACT

We propose a novel algorithm for uncovering the colloquial boundaries of locally characterizing regions present in collections of labeled geospatial data. We address the problem by first modeling the data using scale-space theory, allowing us to represent it simultaneously across different scales as a family of increasingly smoothed density distributions. We then derive region boundaries by applying localized label weighting and image processing techniques to the scale-space representation of each label. Important insights into the data can be acquired by visualizing the shape and size of the resulting boundaries for each label at multiple scales. We demonstrate our technique operating at scale by discovering the boundaries of the most geospatially salient tags associated with a large collection of georeferenced photos from Flickr and compare our characterizing regions that emerge from the data with those produced by a recent technique from the research literature.

References

  1. S. Ahern, M. Naaman, R. Nair, and J. Yang. World explorer: visualizing aggregate data from unstructured text in geo-referenced collections. JDCL, pp. 1--10, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. T. Ai and J. Li. The lifespan model of GIS data representation over scale space. GEOINFORMATICS, pp. 1--6, 2009.Google ScholarGoogle Scholar
  3. Y. Baba, F. Ishikawa, and S. Honiden. Extraction of places related to Flickr tags. ECAI, pp. 523--528, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. Barkowsky, L. J. Latecki, and K.-F. Richter. Schematizing maps: simplification of geographic shape by discrete curve evolution. Spatial Cognition II, pp. 41--53, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Bay, A. Ess, T. Tuytelaars, and L. van Gool. Speeded-Up Robust Features (SURF). CVIU, 110(3):346--359, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. F. Chang, C.-J. Chen, and C.-J. Lu. A linear-time component-labeling algorithm using contour tracing technique. CVIU, 93:206--220, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. W.-C. Chen, A. Battestini, N. Gelfand, and V. Setlur. Visual summaries of popular landmarks from community photo collections. ICMR, pp. 789--782, 2009.Google ScholarGoogle Scholar
  8. M. Cristani, A. Perina, U. Castellani, and V. Murino. Content visualization and management of geo-located image databases. CHI, pp. 2823--2828, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D.-P. Deng, T.-R. Chuang, and R. Lemmens. Conceptualization of place via spatial clustering and co-occurrence analysis. LBSN, pp. 49--56, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. V. Estivill-Castro and I. Lee. AUTOCLUST: automatic clustering via boundary extraction for mining massive point-data sets. GeoComputation, 2001.Google ScholarGoogle Scholar
  11. P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Theory of Computing, 8(1):415--428, 2012.Google ScholarGoogle Scholar
  12. J. Gall. Use of cylindrical projections for geographical, astronomical, and scientific purposes. Scottish Geographical Magazine, 1(4):119--123, 1885.Google ScholarGoogle Scholar
  13. W. W. Hargrove and F. M. Ho man. Using multivariate clustering to characterize ecoregion borders. CiSE, 1(4):18--25, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Hau and G.-J. Houben. Geo-location estimation of Flickr images: social web based enrichment. ECIR, pp. 85--96, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Hays and A. A. Efros. IM2GPS: estimating geographic information from a single image. CVPR, pp. 1--8, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  16. H. Hotta and M. Hagiwara. A neural-network-based geographic tendency visualization. WI-IAT, pp. 817--823, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Hotta and M. Hagiwara. Online geovisualization with fast kernel density estimator. WI-IAT, pp. 622--625, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Intagorn and K. Lerman. Learning boundaries of vague places from noisy annotations. SIGSPATIAL, pp. 425--428, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Jaffe, M. Naaman, T. Tassa, and M. Davis. Generating summaries and visualization for large collections of geo-referenced photographs. MIR, pp. 89--98, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. R. Jain. Experiential computing. CACM, 46(7):48--54, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C. B. Jones, R. S. Purves, P. D. Clough, and H. Joho. Modelling vague places with knowledge from the Web. IJGIS, 22(10):1045--1065, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Jung, H. Park, R. Maeng, and S. Han. A geometric pattern-based method to build hierarchies of geo-referenced tags. SocialCom, pp. 546--551, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. S. Kennedy and M. Naaman. Generating diverse and representative image search results for landmarks. WWW, pp. 297--306, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. L. S. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. How Flickr helps us make sense of the world: context and content in community-contributed media collections. MM, pp. 631--640, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C. Kessler, P. Maue, J. T. Heuer, and T. Bartoschek. Bottom-up gazetteers: learning from the implicit semantics of geotags. GeoS, pp. 83--102, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Kleban, E. Moxley, J. Xu, and B. S. Manjunath. Global annotation on georeferenced photographs. CIVR, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363--370, 1984.Google ScholarGoogle Scholar
  28. I. Laptev, H. Mayer, T. Lindeberg, W. Eckstein, C. Steger, and A. Baumgartner. Automatic extraction of roads from aerial images based on scale space and snakes. Machine Vision and Applications, 12:23--31, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia information retrieval: state of the art and challenges. TOMCCAP, 2(1):1--19, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. O. Linde and T. Lindeberg. Composed complex-cue histograms: An investigation of the information content in receptive field based image descriptors for object recognition. CVIU, 116(4):538--560, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Lindeberg. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus of attention. IJCV, 11(3):283--318, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91--110, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C.-A. Lu, C.-H. Chen, and P.-J. Cheng. Clustering and visualizing geographic data using geo-tree. WI-IAT, pp. 479--482, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Raguram, C. Wu, J.-M. Frahm, and S. Lazebnik. Modeling and recognition of landmark image collections using iconic scene graphs. IJCV, 95(3):213--239, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1(3):244--256, 1972.Google ScholarGoogle Scholar
  36. T. Rattenbury, N. Good, and M. Naaman. Towards automatic extraction of event and place semantics from Flickr tags. SIGIR, pp. 103--110, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. T. Rattenbury and M. Naaman. Methods for extracting place semantics from Flickr tags. TWEB, 3(1):1, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25 and beyond. FTIR, 3(4):333--389, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. Rudinac, A. Hanjalic, and M. Larson. Finding representative and diverse community contributed images to create visual summaries of geographic areas. ICMR, pp. 1109--1112, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. P. Serdyukov, V. Murdock, and R. van Zwol. Placing Flickr photos on a map. SIGIR, pp. 484--491, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. B. Sigurbjornsson and R. v. Zwol. Flickr Tag Recommendation based on Collective Knowledge. WWW, pp. 327--336, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. Burges. Optimisation methods for ranking functions with multiple parameters. CIKM, pp. 585--593, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. B. Thomee and A. Rae. Exploring and Browsing Photos through Characteristic Geographic Tag Regions. MM, pp. 1273--1274, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. O. Van Laere, S. Schockaert, and B. Dhoedt. Finding locations of Flickr resources using language models and similarity search. ICMR, article 48, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. F. Wang. Job access and homicide patterns in Chicago: an analysis at multiple geographic levels based on scale-space theory. JQC, 21(2):195--217, 2005.Google ScholarGoogle Scholar
  46. K. Q. Weinberger, M. Slaney, and R. van Zwol. Resolving tag ambiguity. MM, pp. 111--120, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. Witkin. Scale-space filtering: a new approach to multi-scale description. ICASSP, 9:150--153, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  48. K. Yanai, H. Kawakubo, and B. Qiu. A visual analysis of the relationship between word concepts and geographical locations. CIVR, article 13, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Uncovering locally characterizing regions within geotagged data

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          WWW '13: Proceedings of the 22nd international conference on World Wide Web
          May 2013
          1628 pages
          ISBN:9781450320351
          DOI:10.1145/2488388

          Copyright © 2013 Copyright is held by the International World Wide Web Conference Committee (IW3C2).

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 May 2013

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          WWW '13 Paper Acceptance Rate125of831submissions,15%Overall Acceptance Rate1,899of8,196submissions,23%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader