skip to main content
10.1145/2488608.2488644acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Sparsest cut on bounded treewidth graphs: algorithms and hardness results

Published:01 June 2013Publication History

ABSTRACT

We give a 2-approximation algorithm for the non-uniform Sparsest Cut problem that runs in time nO(k), where k is the treewidth of the graph. This improves on the previous 22k-approximation in time poly(n) 2O(k) due to Chlamtac et al. [18].

To complement this algorithm, we show the following hardness results: If the non-uniform Sparsest Cut has a ρ-approximation for series-parallel graphs (where ρ ≥ 1), then the MaxCut problem has an algorithm with approximation factor arbitrarily close to 1/ρ. Hence, even for such restricted graphs (which have treewidth 2), the Sparsest Cut problem is NP-hard to approximate better than 17/16 - ε for ε > 0; assuming the Unique Games Conjecture the hardness becomes 1/αGW - ε. For graphs with large (but constant) treewidth, we show a hardness result of 2 - ε assuming the Unique Games Conjecture.

Our algorithm rounds a linear program based on (a subset of) the Sherali-Adams lift of the standard Sparsest Cut LP. We show that even for treewidth-2 graphs, the LP has an integrality gap close to 2 even after polynomially many rounds of Sherali-Adams. Hence our approach cannot be improved even on such restricted graphs without using a stronger relaxation.

References

  1. C. Ambühl, M. Mastrolilli, and O. Svensson. Inapproximability results for maximum edge biclique, minimum linear arrangement, and sparsest cut. SIAM J. Comput., 40(2):567--596, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Amir. Approximation algorithms for treewidth. Algorithmica, 56(4):448--479, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277--284, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. J. Amer. Math. Soc., 21(1):1--21, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph partitioning. J. ACM, 56(2):Art. 5, 37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Bienstock and N. Ozbay. Tree-width and the Sherali-Adams operator. Discrete Optim., 1(1):13--21, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. H. Bodlaender. NC-algorithms for graphs with small treewidth. In Graph-Theoretic Concepts in Computer Science, volume 344 of LNCS, pages 1--10. 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6):1305--1317, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209:1--45, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Brinkman and M. Charikar. On the impossibility of dimension reduction in $l_1$. J. ACM, 52(5):766--788, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Chakrabarti, A. Jaffe, J. R. Lee, and J. Vincent. Embeddings of topological graphs: Lossy invariants, linearization, and 2-sums. In FOCS, pages 761--770, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Charikar, K. Makarychev, and Y. Makarychev. Integrality gaps for Sherali-Adams relaxations. In STOC, pages 283--292. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness of approximating multicut and sparsest-cut. Comput. Complexity, 15(2):94--114, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Cheeger, B. Kleiner, and A. Naor. A (log n)Ω(1) integrality gap for the sparsest cut SDP. In FOCS, pages 555--564. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Cheeger, B. Kleiner, and A. Naor. Compression bounds for Lipschitz maps from the Heisenberg group to L_1. Acta Math., 207(2):291--373, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  16. C. Chekuri, A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair. Embedding k-outerplanar graphs into $\ell_1$. SIAM J. Discrete Math., 20(1):119--136, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Chekuri, F. B. Shepherd, and C. Weibel. Flow-cut gaps for integer and fractional multiflows. In SODA, pages 1198--1208, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Chlamtác, R. Krauthgamer, and P. Raghavendra. Approximating sparsest cut in graphs of bounded treewidth. In APPROX, volume 6302 of LNCS, pages 124--137. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Chuzhoy and S. Khanna. Polynomial flow-cut gaps and hardness of directed cut problems. J. ACM, 56(2):Art. 6, 28, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Crescenzi, R. Silvestri, and L. Trevisan. On weighted vs unweighted versions of combinatorial optimization problems. Inform. and Comput., 167(1):10--26, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.Google ScholarGoogle Scholar
  22. E. Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Combinatorica, 18(1):27--35, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair. Cuts, trees and $\ell_1$-embeddings of graphs. Combinatorica, 24(2):233--269, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. V. Guruswami and A. K. Sinop. Certifying graph expansion and non-uniform sparsity via generalized spectra. In SODA, 2013.Google ScholarGoogle Scholar
  25. V. Guruswami, A. K. Sinop, and Y. Zhou. Constant factor lasserre integrality gaps for graph partitioning problems. CoRR, abs/1202.6071, 2012.Google ScholarGoogle Scholar
  26. J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798--859, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319--357, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Khot and R. Saket. SDP integrality gaps with local l_1-embeddability. In FOCS 09, pages 565--574. IEEE Computer Soc., Los Alamitos, CA, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Khot and N. K. Vishnoi. The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l$_\mbox1$. In FOCS, pages 53--62, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Klein, S. A. Plotkin, and S. B. Rao. Excluded minors, network decomposition, and multicommodity flow. In STOC, pages 682--690, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. Krauthgamer and Y. Rabani. Improved lower bounds for embeddings into L_1. SIAM J. Comput., 38(6):2487--2498, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. R. Lee and A. Naor. Embedding the diamond graph in $L_p$ and dimension reduction in L_1. Geom. Funct. Anal., 14(4):745--747, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  33. J. R. Lee and A. Naor. l_p metrics on the Heisenberg group and the Goemans-Linial conjecture. In FOCS, pages 99--108, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. R. Lee and P. Raghavendra. Coarse differentiation and multi-flows in planar graphs. Discrete Comput. Geom., 43(2):346--362, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. R. Lee and A. Sidiropoulos. On the geometry of graphs with a forbidden minor. In STOC, pages 245--254. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. R. Lee and A. Sidiropoulos. Near-optimal distortion bounds for embedding doubling spaces into $L_1$ {extended abstract}. In STOC, pages 765--772. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2):215--245, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  38. A. Magen and M. Moharrami. Robust algorithms for max independent set on minor-free graphs based on the Sherali-Adams hierarchy. In APPROX, volume 5687 of LNCS, pages 258--271. Springer, Berlin, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. D. W. Matula and F. Shahrokhi. Sparsest cuts and bottlenecks in graphs. Discrete Appl. Math., 27(1--2):113--123, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. E. Mossel, R. O'Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences: invariance and optimality. Ann. of Math. (2), 171(1):295--341, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  41. I. Newman and Y. Rabinovich. A lower bound on the distortion of embedding planar metrics into Euclidean space. Discrete Comput. Geom., 29(1):77--81, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  42. H. Okamura and P. D. Seymour. Multicommodity flows in planar graphs. J. Combin. Theory Ser. B, 31(1):75--81, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  43. Y. Rabinovich. On average distortion of embedding metrics into the line and into l_1. In STOC, pages 456--462, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. P. Raghavendra and D. Steurer. Integrality gaps for strong SDP relaxations of Unique Games. In FOCS, pages 575--585. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In SOCG, pages 300--306, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. O. Regev. Entropy-based bounds on dimension reduction in l_1. Israel Journal of Mathematics, 2012. arXiv:1108.1283.Google ScholarGoogle Scholar
  47. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7(3):309--322, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  48. L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson. Gadgets, approximation, and linear programming. SIAM J. Comput., 29(6):2074--2097, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. M. J. Wainwright and M. I. Jordan. Treewidth-based conditions for exactness of the sherali-adams and lasserre relaxations. Technical Report 671, UC Berkeley, September 2004.Google ScholarGoogle Scholar

Index Terms

  1. Sparsest cut on bounded treewidth graphs: algorithms and hardness results

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '13: Proceedings of the forty-fifth annual ACM symposium on Theory of Computing
      June 2013
      998 pages
      ISBN:9781450320290
      DOI:10.1145/2488608

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 June 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      STOC '13 Paper Acceptance Rate100of360submissions,28%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader