skip to main content
10.1145/2488608.2488714acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

A new family of locally correctable codes based on degree-lifted algebraic geometry codes

Published:01 June 2013Publication History

ABSTRACT

We describe new constructions of error correcting codes, obtained by "degree-lifting" a short algebraic geometry base-code of block-length q to a lifted-code of block-length qm, for arbitrary integer m. The construction generalizes the way degree-d, univariate polynomials evaluated over the q-element field (also known as Reed-Solomon codes) are "lifted" to degree-d, m-variate polynomials (Reed-Muller codes). A number of properties are established: The rate of the degree-lifted code is approximately a 1/m!-fraction of the rate of the base-code. The relative distance of the degree-lifted code is at least as large as that of the base-code. This is proved using a generalization of the Schwartz-Zippel Lemma to degree-lifted Algebraic-Geometry codes. [Local correction] If the base code is invariant under a group that is "close" to being doubly-transitive (in a precise manner defined later then the degree-lifted code is locally correctable with query complexity at most q2. The automorphisms of the base-code are crucially used to generate query-sets, abstracting the use of affine-lines in the local correction procedure of Reed-Muller codes. Taking a concrete illustrating example, we show that degree-lifted Hermitian codes form a family of locally correctable codes over an alphabet that is significantly smaller than that obtained by Reed-Muller codes of similar constant rate, message length, and distance.

References

  1. N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Reed-Muller codes. IEEE Transactions on Information Theory, 51(11):4032--4039, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal of the ACM, 45(1):70--122, Jan. 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica, 23(3):365--426, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In STOC '91: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 21--32, New York, NY, USA, 1991. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Babai, L. Fortnow, and C. Lund. Addendum to non-deterministic exponential time has two-prover interactive protocols. Computational Complexity, 2:374, 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. Bpp has subexponential time simulations unless exptime has publishable proofs. Computational Complexity, 3:307--318, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. Babai, A. Shpilka, and D. Stefankovic. Locally testable cyclic codes. In IEEE, editor, Proceedings: 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003, 11--14 October 2003, Cambridge, Massachusetts, pages 116--125, pub-IEEE:adr, 2003. IEEE Computer Society Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, STACS '90, pages 37--48. 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Ben-Aroya, K. Efremenko, and A. Ta-Shma. Local list decoding with a constant number of queries. Electronic Colloquium on Computational Complexity (ECCC), 17:47, 2010.Google ScholarGoogle Scholar
  10. A. Ben-Aroya and A. Ta-Shma. Constructing small-bias sets from algebraic-geometric codes. In FOCS, pages 191--197. IEEE Computer Society, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. E. Ben-Sasson, E. Grigorescu, G. Maatouk, A. Shpilka, and M. Sudan. On sums of locally testable affine invariant properties. Electronic Colloquium on Computational Complexity (ECCC), 18:79, 2011.Google ScholarGoogle Scholar
  12. E. Ben-Sasson, V. Guruswami, T. Kaufman, M. Sudan, and M. Viderman. Locally testable codes require redundant testers. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC), pages 52--61, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some 3CNF properties are hard to test. SIAM J. on Computing, 35(1):1--21, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. Ben-Sasson, G. Maatouk, A. Shpilka, and M. Sudan. Symmetric LDPC codes are not necessarily locally testable. In preparation, 2010.Google ScholarGoogle Scholar
  15. E. Ben-Sasson, N. Ron-Zewi, and M. Sudan. Sparse affine-invariant linear codes are locally testable. Electronic Colloquium on Computational Complexity (ECCC), 19:49, 2012.Google ScholarGoogle Scholar
  16. E. Ben-Sasson and M. Sudan. Simple PCPs with poly-log rate and query complexity. In H. N. Gabow and R. Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22--24, 2005, pages 266--275. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. Ben-Sasson and M. Sudan. Limits on the rate of locally testable affine-invariant codes. Electronic Colloquium on Computational Complexity (ECCC), 17:108, 2010.Google ScholarGoogle Scholar
  18. E. Ben-Sasson and M. Viderman. Composition of Semi-LTCs by Two-Wise Tensor Products. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization, (APPROX-RANDOM 2009), volume 5687 of Lecture Notes in Computer Science, pages 378--391. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. E. Ben-Sasson and M. Viderman. Tensor Products of Weakly Smooth Codes are Robust. Theory of Computing, 5(1):239--255, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  20. Y. M. Chee, T. Feng, S. Ling, H. Wang, and L. F. Zhang. Query-efficient locally decodable codes of subexponential length. CoRR, abs/1008.1617, 2010.Google ScholarGoogle Scholar
  21. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. Journal of the ACM, 45:965--981, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Coppersmith and A. Rudra. On the Robust Testability of Product of Codes. Electronic Colloquium on Computational Complexity (ECCC), (104), 2005.Google ScholarGoogle Scholar
  23. A. Deshpande, R. Jain, T. Kavitha, J. Radhakrishnan, and S. V. Lokam. Better lower bounds for locally decodable codes. In IEEE Conference on Computational Complexity, pages 184--193, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. I. Dinur, M. Sudan, and A. Wigderson. Robust local testability of tensor products of LDPC codes. In J. Díaz, K. Jansen, J. D. P. Rolim, and U. Zwick, editors, APPROX-RANDOM, volume 4110 of Lecture Notes in Computer Science, pages 304--315. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Z. Dvir, P. Gopalan, and S. Yekhanin. Matching vector codes. Electronic Colloquium on Computational Complexity (ECCC), 17:12, 2010.Google ScholarGoogle Scholar
  26. K. Efremenko. 3-query locally decodable codes of subexponential length. In M. Mitzenmacher, editor, STOC, pages 39--44. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. Efremenko. From irreducible representations to locally decodable codes. In STOC, pages 327--338, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. Fortnow and S. P. Vadhan, editors. Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6--8 June 2011. ACM, 2011. Google ScholarGoogle Scholar
  29. K. Friedl and M. Sudan. Some improvements to total degree tests. In ISTCS, pages 190--198, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Garcia and H. Stichtenoth. On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields. Journal of Number Theory, 61:248--273, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  31. O. Goldreich, H. J. Karloff, L. J. Schulman, and L. Trevisan. Lower bounds for linear locally decodable codes and private information retrieval. In IEEE Conference on Computational Complexity, pages 175--183, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. V. Goppa. Algebraic-geometric codes. Izu. Akad. Nauk SSSR Ser. Mat, 46(4):762--781, 1982.Google ScholarGoogle Scholar
  33. V. D. Goppa. Geometry and Codes. Springer, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  34. E. Grigorescu, T. Kaufman, and M. Sudan. Succinct representation of codes with applications to testing. In I. Dinur, K. Jansen, J. Naor, and J. D. P. Rolim, editors, APPROX-RANDOM, volume 5687 of Lecture Notes in Computer Science, pages 534--547. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Guo, S. Kopparty, and M. Sudan. New affine-invariant codes from lifting. In ITCS, pages 529--540, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. W. Hamming. Error detecting and error correcing codes. Bell System Technical Journal, 29:147---160, 1950.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. P. Hansen and H. Stichtenoth. Group codes on certain algebraic curves with many rational points. Appl. Algebra Eng. Commun. Comput., 1:67--77, 1990.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Hansen. Error-correcting codes from higher-dimensional varieties. Finite Fields Appl., 7:530--552, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. R. Impagliazzo and A. Wigderson. P = BPP if e requires exponential circuits: Derandomizing the xor lemma. In F. T. Leighton and P. W. Shor, editors, STOC, pages 220--229. ACM, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. T. Itoh and Y. Suzuki. Improved constructions for query-efficient locally decodable codes of subexponential length. IEICE Transactions, 93-D(2):263--270, 2010.Google ScholarGoogle Scholar
  41. J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory of computing, STOC '00, pages 80--86, New York, NY, USA, 2000. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. T. Kaufman and A. Lubotzky. Edge transitive ramanujan graphs and symmetric ldpc good codes. In H. J. Karloff and T. Pitassi, editors, STOC, pages 359--366. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T. Kaufman and M. Sudan. Algebraic property testing: the role of invariance. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 403--412, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. T. Kaufman and M. Viderman. Locally testable vs. locally decodable codes. In M. J. Serna, R. Shaltiel, K. Jansen, and J. D. P. Rolim, editors, APPROX-RANDOM, volume 6302 of Lecture Notes in Computer Science, pages 670--682. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. T. Kaufman and A. Wigderson. Symmetric ldpc codes and local testing. In A. C.-C. Yao, editor, ICS, pages 406--421. Tsinghua University Press, 2010.Google ScholarGoogle Scholar
  46. I. Kerenidis and R. de Wolf. Exponential lower bound for 2-query locally decodable codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395--420, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. S. Kopparty, S. Saraf, and S. Yekhanin. High-rate codes with sublinear-time decoding. In Fortnow and Vadhancite DBLP: conf/stoc/2011, pages 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. J. L. L. Gold and H. Schenck. Cayley-bacharach and evaluation codes on complete intersections. J. Pure Appl. Algebra, 196:91--99, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  49. G. Lachaud. Number of points of plane sections and linear codes defined on algebraic varieties. Arithmetic, Geometry and Coding Theory, Proceedings Luminy, pages 77--104, 1993.Google ScholarGoogle Scholar
  50. R. J. Lipton. Efficient checking of computations. In Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, STACS '90, pages 207--215, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. J. B. Little. Algebraic geometry codes from higher dimensional varieties. CoRR, abs/0802.2349, 2008.Google ScholarGoogle Scholar
  52. C. Lund, L. Fortnow, H. Karloff, and N. Noam. Algebraic methods for interactive proof systems. Journal of the ACM, 39(4):859--868, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. S. V. M.A. Tsfasman and T. Zink. Modular curves, shimura curves, and goppa codes, better than varshamov-gilbert bound. math. Nachr., 109:21--28, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  54. F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. North-Holland Amsterdam, 1978.Google ScholarGoogle Scholar
  55. K. Obata. Optimal lower bounds for 2-query locally decodable linear codes. In J. D. P. Rolim and S. P. Vadhan, editors, RANDOM, volume 2483 of Lecture Notes in Computer Science, pages 39--50. Springer, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. J. Pedersen. A function field related to the ree group. Lect. Notes Math., 1518:122--132, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  57. P. Raghavendra. A note on yekhanin's locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC), 14(016), 2007.Google ScholarGoogle Scholar
  58. A. A. Razborov and S. Yekhanin. An omega(n1/3) lower bound for bilinear group based private information retrieval. Theory of Computing, 3(1):221--238, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  59. I. S. Reed. A class of multiple-error-correcting codes and the decoding scheme. IEEE Transactions on Information Theory, (4):38--49, 1954.Google ScholarGoogle Scholar
  60. F. rodier. Codes from flag varieties over a finite field. J. Pure Appl. Algebra, 178:203--214, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  61. R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM, 52(2):172--216, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869--877, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379---423, 623--656, 1948.Google ScholarGoogle ScholarCross RefCross Ref
  64. C. E. Shannon. Communication theory - exposition of fundamentals. IEEE Transactions on Information Theory, 1:44--47, 1953.Google ScholarGoogle Scholar
  65. H. Stichtenoth. On automorphisms of geometric goppa codes. Journal of Algebra, page 113.Google ScholarGoogle Scholar
  66. H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer, 1993.Google ScholarGoogle Scholar
  67. M. Sudan. Invariance in property testing. Electronic Colloquium on Computational Complexity (ECCC), (051), 2010.Google ScholarGoogle Scholar
  68. M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the xor lemma (extended abstract). In J. S. Vitter, L. L. Larmore, and F. T. Leighton, editors, STOC, pages 537--546. ACM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. M. Tsfasman and S.G.Vladut. Algebraic-geometric codes. (Kluwer, Dordrecht, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. P. Valiant. The tensor product of two codes is not necessarily robustly testable. In C. Chekuri, K. Jansen, J. D. P. Rolim, and L. Trevisan, editors, APPROX-RANDOM, volume 3624 of Lecture Notes in Computer Science, pages 472--481. Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. S. Wehner and R. de Wolf. Improved lower bounds for locally decodable codes and private information retrieval. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer Science, pages 1424--1436. Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. D. P. Woodruff. New lower bounds for general locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC), 14(006), 2007.Google ScholarGoogle Scholar
  73. C. Xing. On automorphism groups of the hermitian codes. IEEE Transactions on Information Theory, 41(6):1629--1635, 1995. Google ScholarGoogle ScholarCross RefCross Ref
  74. S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM, 55(1), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. S. Yekhanin. Locally decodable codes: A brief survey. In Y. M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing, editors, IWCC, volume 6639 of Lecture Notes in Computer Science, pages 273--282. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A new family of locally correctable codes based on degree-lifted algebraic geometry codes

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '13: Proceedings of the forty-fifth annual ACM symposium on Theory of Computing
      June 2013
      998 pages
      ISBN:9781450320290
      DOI:10.1145/2488608

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 June 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      STOC '13 Paper Acceptance Rate100of360submissions,28%Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader