skip to main content
10.1145/2493525.2493530acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmlisConference Proceedingsconference-collections
research-article

Machine learning for interactive systems and robots: a brief introduction

Published:04 August 2013Publication History

ABSTRACT

Research on interactive systems and robots, i.e. interactive machines that perceive, act and communicate, has applied a multitude of different machine learning frameworks in recent years, many of which are based on a form of reinforcement learning (RL). In this paper, we will provide a brief introduction to the application of machine learning techniques in interactive learning systems. We identify several dimensions along which interactive learning systems can be analyzed. We argue that while many applications of interactive machines seem different at first sight, sufficient commonalities exist in terms of the challenges faced. By identifying these commonalities between (learning) approaches, and by taking interdisciplinary approaches towards the challenges, we anticipate more effective design and development of sophisticated machines that perceive, act and communicate in complex, dynamic and uncertain environments.

References

  1. R. Akrour, M. Schoenauer, and M. Sebag. APRIL: Active Preference Learning-Based Reinforcement Learning. In ECML/PKDD (2), pages 116--131, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. B. Argall, S. Chernova, M. M. Veloso, and B. Browning. A Survey of Robot Learning from Demonstration. Robotics and Autonomous Systems, 57(5):469--483, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. D. Argall and A. G. Billard. A survey of tactile human--robot interactions. Robotics and Autonomous Systems, 58(10):1159--1176, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. G. Atkeson and J. C. Santamaría. A Comparison of Direct and Model-based Reinforcement Learning. In ICRA, pages 3557--3564, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  5. C. G. Atkeson and S. Schaal. Robot Learning From Demonstration. In ICML, pages 12--20, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J.-C. Baillie. Developmental Robotics at Aldebaran A-Lab. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Barto and S. Mahadevan. Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems: Theory and Applications, 13(1-2):41--77, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends in Machine Learning, 2(1):1--127, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Blum and T. M. Mitchell. Combining Labeled and Unlabeled Data with Co-Training. In COLT, pages 92--100, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Bohus, B. Langner, A. Raux, A. W. Black, M. Eskenazi, and A. I. Rudnicky. Online Supervised Learning of Non-Understanding Recovery Policies. In SLT, pages 170--173, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  12. C. Boutilier. Sequential Optimality and Coordination in Multiagent Systems. In IJCAI, pages 478--485, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. H. Bowling and M. M. Veloso. Multiagent Learning Using a Variable Learning Rate. Artif. Intell., 136(2):215--250, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. Busoniu, R. Babuska, and B. D. Schutter. A Comprehensive Survey of Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 38(2):156--172, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Cakmak, N. DePalma, R. Arriaga, and A. Thomaz. Exploiting social partners in robot learning. Autonomous Robots, 29(3-4):309--329, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Cakmak and A. L. Thomaz. Designing robot learners that ask good questions. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, HRI '12, pages 17--24, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell. Toward an Architecture for Never-Ending Language Learning. In AAAI, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Chao, M. Cakmak, and A. Thomaz. Transparent Active Learning for Robots. In Proceedings of the 5th ACM/IEEE international Conference on Human-Robot Interaction, HRI '10, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. X. Chen. Open Knowledge for Human-Robot Interaction. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Cuayáhuitl. Hierarchical Reinforcement Learning for Spoken Dialogue Systems. PhD thesis, School of Informatics, University of Edinburgh, January 2009.Google ScholarGoogle Scholar
  21. H. Cuayáhuitl and N. Dethlefs. Optimizing situated dialogue management in unknown environments. In INTERSPEECH, pages 1009--1012, 2011.Google ScholarGoogle Scholar
  22. H. Cuayáhuitl and N. Dethlefs. Spatially-Aware Dialogue Control Using Hierarchical Reinforcement Learning. ACM Transactions on Speech and Language Processing, 7(3):5:1--5:26, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Cuayáhuitl and N. Dethlefs. Dialogue Systems Using Online Learning: Beyond Empirical Methods. In NAACL-HLT Workshop on Future Directions and Needs in the Spoken Dialog Community: Tools and Data, SDCTD '12, pages 7--8, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Cuayáhuitl and N. Dethlefs. Hierarchical multiagent reinforcement learning for coordinating verbal and non-verbal actions in robots. In ECAI Workshop on Machine Learning for Interactive Systems (MLIS), pages 27--29, Montpellier, France, 2012.Google ScholarGoogle Scholar
  25. H. Cuayáhuitl, I. Kruijff-Korbayová, and N. Dethlefs. Hierarchical Dialogue Policy Learning using Flexible State Transitions and Linear Function Approximation. In COLING (Demos), pages 95--102, 2012.Google ScholarGoogle Scholar
  26. T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition. International Journal of Artificial Intelligence Research, 13:227--303, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Epshteyn, A. Vogel, and G. DeJong. Active Reinforcement Learning. In ICML, pages 296--303, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement Learning. JMLR, 6:503--556, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. W. Fan and N. Bouguila. Expectation Propagation Learning of Finite Beta-Liouville Mixtures for Spatio-temporal Object Recognition. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. Fernández and M. M. Veloso. Probabilistic Policy Reuse in a Reinforcement Learning Agent. In AAMAS, pages 720--727, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. E. Ferreira and F. Lefèvre. Social Signal and User Adaptation in Reinforcement Learning-based Dialogue Management. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. A. Ferreira, A. A. Masiero, P. T. A. Junior, and R. A. C. Bianchi. Automatic Interface Optimization through Random Exploration of Available Elements. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. I. K. Fodor. A Survey of Dimension Reduction Techniques. Technical Report UCRL-ID-148494, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, June 2002.Google ScholarGoogle Scholar
  35. L. Frommberger. Qualitative Spatial Abstraction in Reinforcement Learning. Cognitive Technologies. Springer, Berlin Heidelberg, Nov. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. L. Frommberger and D. Wolter. Structural knowledge transfer by spatial abstraction for reinforcement learning agents. Adaptive Behavior, 18(6):507--525, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. Fürnkranz and E. Hüllermeier. Preference Learning. In Encycl. of Machine Learning, pages 789--795. 2010.Google ScholarGoogle Scholar
  38. J. Fürnkranz, E. Hüllermeier, W. Cheng, and S.-H. Park. Preference-based Reinforcement Learning: A Formal Framework and a Policy Iteration Algorithm. Machine Learning, 89(1-2), 2012.Google ScholarGoogle Scholar
  39. M. Gasic, F. Jurcícek, B. Thomson, K. Yu, and S. Young. On-Line Policy Optimisation of Spoken Dialogue Systems via Live Interaction with Human Subjects. In ASRU, pages 312--317, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  40. Z. Ghahramani. Unsupervised Learning. In Advanced Lectures on Machine Learning, pages 72--112, 2003.Google ScholarGoogle Scholar
  41. M. Ghavamzadeh, S. Mahadevan, and R. Makar. Hierarchical Multi-Agent Reinforcement Learning. AAMAS, 13(2):197--229, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. F. Hegel, S. Gieselmann, A. Peters, P. Holthaus, and B. Wrede. Towards a typology of meaningful signals and cues in social robotics. In RO-MAN, 2011 IEEE, pages 72--78, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  43. T. Hester, M. Quinlan, and P. Stone. RTMBA: A Real-Time Model-Based Reinforcement Learning Architecture for Robot Control. In ICRA, pages 85--90, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  44. T. Hester and P. Stone. Learning and using models. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art, chapter 4. Springer, 2012.Google ScholarGoogle Scholar
  45. J. Hu and M. P. Wellman. Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm. In ICML, pages 242--250, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. I. Iturrate, J. Omedes, and L. Montesano. Shared Control of a Robot Using EEG-based Feedback Signals. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. T. Joachims. Transductive Inference for Text Classification using Support Vector Machines. In ICML, pages 200--209, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. L. Kaelbling, M. Littman, and A. Moore. Reinforcement Learning: A Survey. JAIR, 4:237--285, 1996. Google ScholarGoogle Scholar
  49. W. B. Knox, B. D. Glass, B. C. Love, W. T. Maddox, and P. Stone. How humans teach agents - a new experimental perspective. I. J. Social Robotics, 4(4):409--421, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  50. J. Kober and J. Peters. Reinforcement learning in robotics: A survey. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art, chapter 18. Springer, 2012.Google ScholarGoogle Scholar
  51. G. Konidaris. Autonomous Robot Skill Acquisition. PhD thesis, Department of Computer Science, University of Massachusetts Amherst, May 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. G. Konidaris. Robots, Skills, and Symbols. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. G. Konidaris and A. G. Barto. Efficient Skill Learning using Abstraction Selection. In IJCAI, pages 1107--1112, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. G. D. Konidaris and A. G. Barto. Autonomous shaping: Knowledge transfer in reinforcement learning. In Proceedings of the Twenty Third International Conference on Machine Learning (ICML 2006), pages 489--49, Pittsburgh, PA, June 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. S. B. Kotsiantis. Supervised Machine Learning: A Review of Classification Techniques. Informatica (Slovenia), 31(3):249--268, 2007.Google ScholarGoogle Scholar
  56. M. Lauer and M. A. Riedmiller. An Algorithm for Distributed Reinforcement Learning in Cooperative Multi-Agent Systems. In ICML, pages 535--542, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. A. Lazaric. Transfer in reinforcement learning: A framework and a survey. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art, chapter 5. Springer, 2012.Google ScholarGoogle Scholar
  58. O. Lemon and O. Pietquin. Machine Learning for Spoken Dialogue Systems. In INTERSPEECH, pages 2685--2688, 2007.Google ScholarGoogle Scholar
  59. M. L. Littman. Markov Games as a Framework for Multi-Agent Reinforcement Learning. In ICML, pages 157--163, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Y. Liu and P. Stone. Value-function-based transfer for reinforcement learning using structure mapping. In Proceedings Of The National Conference On Artificial Intelligence (AAAI), Boston, MA, July 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. M. Lopes, F. S. Melo, and L. Montesano. Active Learning for Reward Estimation in Inverse Reinforcement Learning. In ECML/PKDD (2), pages 31--46, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. T. M. Mitchell. Machine learning. McGraw Hill series in Computer Science. McGraw-Hill, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De Raedt. Learning relational affordance models for robots in multi-object manipulation tasks. In ICRA, pages 4373--4378, May 2012.Google ScholarGoogle ScholarCross RefCross Ref
  64. J. Mumm and B. Mutlu. Human-robot proxemics: physical and psychological distancing in human-robot interaction. In Proceedings of the 6th international conference on Human-robot interaction, HRI '11, pages 331--338, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. B. Mutlu, T. Kanda, J. Forlizzi, J. Hodgins, and H. Ishiguro. Conversational gaze mechanisms for humanlike robots. ACM Trans. Interact. Intell. Syst., 1(2):12:1--12:33, Jan. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. K. Nigam, A. McCallum, S. Thrun, and T. M. Mitchell. Text Classification from Labeled and Unlabeled Documents using EM. Machine Learning, 39(2/3), 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. N. J. Nilsson. Human-level artificial intelligence? be serious! AI Magazine, 2005.Google ScholarGoogle Scholar
  68. A. Nowe, P. Vrancx, and Y.-M. D. Hauwere. Game theory and multi-agent reinforcement learning. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art, chapter 14. Springer, 2012.Google ScholarGoogle Scholar
  69. F. A. Oliehoek. Decentralized POMDPs. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art, chapter 15. Springer, 2012.Google ScholarGoogle Scholar
  70. S. J. Pan. Transfer Learning with Applications on Text, Sensors and Images. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng., 22(10):1345--1359, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. J. Peters and S. Schaal. Natural Actor-Critic. Neurocomputing, 71(7-9):1180--1190, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. R. Pfeifer and C. Scheier. Understanding Intelligence. The MIT Press, Cambridge, Massachusetts, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. P. Poupart and N. A. Vlassis. Model-based Bayesian Reinforcement Learning in Partially Observable Domains. In ISAIM, 2008.Google ScholarGoogle Scholar
  75. L. D. Pyeatt and A. E. Howe. Decision Tree Function Approximation in Reinforcement Learning. Technical report, In Proceedings of the Third International Symposium on Adaptive Systems: Evolutionary Computation and Probabilistic Graphical Models, 1998.Google ScholarGoogle Scholar
  76. R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught Learning: Transfer Learning from Unlabeled Data. In ICML, pages 759--766, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. L. Rendell, L. Fogarty, W. Hoppitt, T. Morgan, M. Webster, and K. Laland. Cognitive culture: theoretical and empirical insights into social learning strategies. Trends in Cognitive Science, 15(2):68--76, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  78. M. Riedmiller. Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement Learning Method. In ECML, pages 317--328, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. M. Riedmiller. Learning Machines that Perceive, Act, and Communicate. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. L. D. Riek. Wizard of oz studies in hri: A systematic review and new reporting guidelines. Journal of Human-Robot Interaction, 1(1):199--136, 2012.Google ScholarGoogle Scholar
  81. B. Rosman and S. Ramamoorthy. A Multitask Representation Using Reusable Local Policy Templates. 2012.Google ScholarGoogle Scholar
  82. M. Salem, S. Kopp, I. Wachsmuth, K. Rohlfing, and F. Joublin. Generation and evaluation of communicative robot gesture. International Journal of Social Robotics, 4(2):201--217, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  83. J. Schatzmann, K. Weilhammer, M. N. Stuttle, and S. Young. A Survey of Statistical User Simulation Techniques for Reinforcement-Learning of Dialogue Management Strategies. Knowledge Eng. Review, 21(2):97--126, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. B. Settles. Active Learning Literature Survey. Technical Report Technical Report 1648, University of Wisconsin, Madison, 2009.Google ScholarGoogle Scholar
  85. Ö. Simsek, A. P. Wolfe, and A. G. Barto. Identifying Useful Subgoals in Reinforcement Learning by Local Graph Partitioning. In ICML, pages 816--823, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. M. Snel and S. Whiteson. Multi-task reinforcement learning: shaping and feature selection. In Recent Advances in Reinforcement Learning, pages 237--248. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. P. Stone and M. M. Veloso. Multiagent Systems: A Survey from a Machine Learning Perspective. Autonomous Robots, 8(3):345--383, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. H. Suay and S. Chernova. Effect of human guidance and state space size on interactive reinforcement learning. In RO-MAN, 2011 IEEE, pages 1--6, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  89. R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy Gradient Methods for Reinforcement Learning with Function Approximation. In NIPS, pages 1057--1063, 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde: a scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction. In L. Sonenberg, P. Stone, K. Tumer, and P. Yolum, editors, AAMAS, pages 761--768. IFAAMAS, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181--211, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. C. Szepesvári. Algorithms for Reinforcement Learning. Morgan and Claypool Publishers, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. I. Szita. Reinforcement learning in games. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art, chapter 17. Springer, 2012.Google ScholarGoogle Scholar
  95. M. Tan. Multi-Agent Reinforcement Learning: Independent versus Cooperative Agents. In ICML, pages 330--337, 1993.Google ScholarGoogle Scholar
  96. M. Taylor and P. Stone. Transfer Learning for Reinforcement Learning Domains: A Survey. JMLR, 10:1633--1685, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. M. E. Taylor and P. Stone. Cross-domain transfer for reinforcement learning. In Proceedings of the Twenty Fourth International Conference on Machine Learning (ICML 2007), Corvallis, Oregon, June 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. G. Tesauro. Temporal Difference Learning and TD-Gammon. Commun. ACM, 38(3):58--68, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. A. L. Thomaz and C. Breazeal. Teachable robots: Understanding human teaching behavior to build more effective robot learners. Artificial Intelligence, 172:716--737, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. S. Thrun. Learning To Learn: Introduction. Kluwer Academic Publishers, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  101. S. Thrun and J. O'Sullivan. Discovering Structure in Multiple Learning Tasks: The TC Algorithm. In ICML, pages 489--497, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. R. Toris, H. B. Suay, and S. Chernova. A practical comparison of three robot learning from demonstration algorithms. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, HRI '12, pages 261--262, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Skill acquisition via transfer learning and advice taking. In Proceedings of the Seventeenth European Conference on Machine Learning (ECML'06), pages 425--436, Berlin, Germany, Sept. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. W. Uther and M. Veloso. Adversarial Reinforcement Learning. 1997.Google ScholarGoogle Scholar
  105. M. Valko, M. Ghavamzadeh, and A. Lazaric. Semi-Supervised Apprenticeship Learning. JMLR: EWRL10 Workshop and Conference Proceedings, 24:131--141, 2012.Google ScholarGoogle Scholar
  106. M. van Otterlo. The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for Adaptive Sequential Decision Making under Uncertainty in First-Order and Relational Domains. IOS Press, Amsterdam, The Netherlands, 2009.Google ScholarGoogle Scholar
  107. M. van Otterlo. Solving relational and first-order logical markov decision processes: A survey. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-of-the-Art, chapter 8. Springer, 2012.Google ScholarGoogle Scholar
  108. U. von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing, 17(4):395--416, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. M. Waibel, M. Beetz, J. Civera, R. d'Andrea, J. Elfring, D. Galvez-Lopez, K. Haussermann, R. J. M. Janssen, J. M. M. Montiel, A. Perzylo, B. Schiessle, M. Tenorth, O. Zweigle, and M. J. G. van de Molengraft. Roboearth -- a world wide web for robots. IEEE Robotics & Automation Magazine, 18(2):69--82, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  110. M. Wiering and M. van Otterlo. Reinforcement Learning: State-of-the-Art. Springer, 2012.Google ScholarGoogle Scholar
  111. H. Xiong, S. Szedmak, and J. Piater. Homogeneity Analysis for Object-Action Relation Reasoning in Kitchen Scenario. In Proceedings of the Second Workshop on Machine Learning for Interactive Systems (MLIS). ACM ICPS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. D. Yarowsky. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. In ACL, pages 189--196, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. J. Young, J. Sung, A. Voida, E. Sharlin, T. Igarashi, H. Christensen, and R. Grinter. Evaluating human-robot interaction. International Journal of Social Robotics, 3(1):53--67, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  114. S. Young, M. Gasic, B. Thomson, and J. D. Williams. POMDP-Based Statistical Spoken Dialog Systems: A Review. Proceedings of the IEEE, 101(5):1160--1179, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  115. S. Zhifei and E. M. Joo. A survey of inverse reinforcement learning techniques. International Journal of Intelligent Computing and Cybernetics, 5(3):293--311, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  116. X. Zhu. Semi-Supervised Learning Literature Survey. Technical Report Technical Report 1530, University of Wisconsin, Madison, 2006.Google ScholarGoogle Scholar

Index Terms

  1. Machine learning for interactive systems and robots: a brief introduction

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          MLIS '13: Proceedings of the 2nd Workshop on Machine Learning for Interactive Systems: Bridging the Gap Between Perception, Action and Communication
          August 2013
          70 pages
          ISBN:9781450320191
          DOI:10.1145/2493525

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 4 August 2013

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          MLIS '13 Paper Acceptance Rate10of14submissions,71%Overall Acceptance Rate10of14submissions,71%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader