skip to main content
10.1145/2501221.2501227acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Solving combinatorial optimization problems using relaxed linear programming: a high performance computing perspective

Published:11 August 2013Publication History

ABSTRACT

Several important combinatorial optimization problems can be formulated as maximum a posteriori (MAP) inference in discrete graphical models. We adopt the recently proposed parallel MAP inference algorithm Bethe-ADMM and implement it using message passing interface (MPI) to fully utilize the computing power provided by the modern supercomputers with thousands of cores. The empirical results show that our parallel implementation scales almost linearly even with thousands of cores.

References

  1. http://cucis.ece.northwestern.edu/projects/PnetCDF.Google ScholarGoogle Scholar
  2. http://giraph.apache.org.Google ScholarGoogle Scholar
  3. http://www.nersc.gov/users/computational-systems/hopper.Google ScholarGoogle Scholar
  4. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1--122, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. Censor and S. Zenios. Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear programming formulation and approximation algorithms for the metric labeling problem. SIAM Journal on Discrete Mathematics, 18(3):608--625, Mar. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Q. Fu, A. Banerjee, S. Liess, and P. K. Snyder. Drought detection of the last century: An MRF-based approach. In Proceedings of the SIAM International Conference on Data Mining, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  8. Q. Fu, H. Wang, and A. Banerjee. Bethe-ADMM for tree based parallel MAP inference. In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. P. Kasiviswanathan, P. Melville, A. Banerjee, and V. Sindhwani. Emerging topic detection using dictionary learning. In Proceedings of the Twentieth ACM international conference on Information and knowledge management, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568--1583, oct. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2):498--519, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM International Conference on Management of Data, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. F. Martins, P. M. Aguiar, M. A. Figueiredo, N. A. Smith, and E. P. Xing. An augmented Lagrangian approach to constrained MAP inference. In Proceedings of the Twenty-Eighth International Conference on Machine Learning, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. O. Meshi and A. Globerson. An alternating direction method for dual MAP LP relaxation. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. D. Mitchell, T. R. Carter, P. D. Jones, M. Hulme, and M. New. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901-2000) and 16 scenarios (2001-2100). Tyndall Centre for Climate Change Research, 2004.Google ScholarGoogle Scholar
  16. P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365--374, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Ravikumar, A. Agarwal, and M. J. Wainwright. Message-passing for graph-structured linear programs: Proximal methods and rounding schemes. Journal of Machine Learning Research, 11:1043--1080, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for inference. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for Machine Learning. MIT Press, 2011.Google ScholarGoogle Scholar
  19. M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via agreement on (hyper)trees: Message-passing and linear-programming approaches. IEEE Transactions of Information Theory, 51(11):3697--3717, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1--305, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Yang and Y. Zhang. Alternating direction algorithms for l1-problems in compressive sensing. SIAM Journal on Scientific Computing, 33(1):250--278, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    BigMine '13: Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications
    August 2013
    119 pages
    ISBN:9781450323246
    DOI:10.1145/2501221

    Copyright © 2013 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 11 August 2013

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    BigMine '13 Paper Acceptance Rate13of23submissions,57%Overall Acceptance Rate13of23submissions,57%

    Upcoming Conference

    KDD '24

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader