skip to main content
10.1145/2501988.2502032acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

inFORM: dynamic physical affordances and constraints through shape and object actuation

Published:08 October 2013Publication History

ABSTRACT

Past research on shape displays has primarily focused on rendering content and user interface elements through shape output, with less emphasis on dynamically changing UIs. We propose utilizing shape displays in three different ways to mediate interaction: to facilitate by providing dynamic physical affordances through shape change, to restrict by guiding users with dynamic physical constraints, and to manipulate by actuating physical objects. We outline potential interaction techniques and introduce Dynamic Physical Affordances and Constraints with our inFORM system, built on top of a state-of-the-art shape display, which provides for variable stiffness rendering and real-time user input through direct touch and tangible interaction. A set of motivating examples demonstrates how dynamic affordances, constraints and object actuation can create novel interaction possibilities.

Skip Supplemental Material Section

Supplemental Material

uist335.mp4

mp4

34.8 MB

References

  1. Audet, S., and Okutomi, M. A user-friendly method to geometrically calibrate projector-camera systems. In IEEE CVPR 2009 (2009), 47--54.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bau, O., Petrevski, U., and Mackay, W. Bubblewrap: a textile-based electromagnetic haptic display. In CHI EA '09, ACM (2009), 3607--3612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and DeRose, T. D. Toolglass and magic lenses: the see-through interface. In SIGGRAPH '93, ACM (1993), 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ciesla, C. M., and Yairi, M. B. User interface system and method, 07 2009.Google ScholarGoogle Scholar
  5. Coelho, M., and Zigelbaum, J. Shape-changing interfaces. Personal Ubiquitous Comput. 15, 2 (Feb. 2011), 161--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Crampton Smith, G. The hand that rocks the cradle. ID magazine (1995), 60--65.Google ScholarGoogle Scholar
  7. Fitzmaurice, G. W., Ishii, H., and Buxton, W. A. S. Bricks: laying the foundations for graspable user interfaces. In CHI '95, ACM Press/Addison-Wesley Publishing Co. (1995), 442--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., and Ishii, H. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In UIST '12, ACM (2012), 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gaver, W. W. Technology affordances. In CHI '91, ACM (1991), 79--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gibson, J. J. The Senses Considered as Perceptual Systems. Houghton Mifflin Co., 1966.Google ScholarGoogle Scholar
  11. Gibson, J. J. The ecological approach to visual perception. Psychology Press, 1986.Google ScholarGoogle Scholar
  12. Harrison, C., and Hudson, S. E. Providing dynamically changeable physical buttons on a visual display. In CHI '09, ACM (2009), 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hartson, R. Cognitive, physical, sensory, and functional affordances in interaction design. Behaviour & Information Technology 22, 5 (2003), 315--338.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hemmert, F., Hamann, S., Löwe, M., Wohlauf, A., Zeipelt, J., and Joost, G. Take me by the hand: Haptic compasses in mobile devices through shape change and weight shift. In NordiCHI '10 (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ishii, H. Tangible bits: beyond pixels. In TEI '08, ACM (2008), xv--xxv. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. Radical atoms: beyond tangible bits, toward transformable materials. interactions 19, 1 (Jan. 2012), 38--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ishii, H., and Ullmer, B. Tangible bits: towards seamless interfaces between people, bits and atoms. In CHI '97, ACM (1997), 234--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. Project feelex: adding haptic surface to graphics. In SIGGRAPH '01, ACM (2001), 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jansen, Y., Karrer, T., and Borchers, J. Mudpad: tactile feedback and haptic texture overlay for touch surfaces. In ITS '10, ACM (2010), 11--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kaptelinin, V., and Nardi, B. Affordances in hci: toward a mediated action perspective. In CHI '12, ACM (2012), 967--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Klemmer, S. R., Hartmann, B., and Takayama, L. How bodies matter: five themes for interaction design. In DIS '06, ACM (2006), 140--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. KOJIMA, M., SUGIMOTO, M., NAKAMURA, A., TOMITA, M., INAMI, M., and NII, H. Augmented coliseum: An augmented game environment with small vehicles. In TABLETOP '06, IEEE Computer Society (2006), 3--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lee, N., Kim, J., Lee, J., Shin, M., and Lee, W. Molebot: mole in a table. In SIGGRAPH '11, ACM (2011), 9:1--9:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Leithinger, D., Follmer, S., Olwal, A., Luescher, S., Hogge, A., Lee, J., and Ishii, H. Sublimate: State-changing virtual and physical rendering to augment interaction with shape displays. In CHI '13, ACM (2013), 1441--1450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Leithinger, D., Lakatos, D., DeVincenzi, A., Blackshaw, M., and Ishii, H. Direct and gestural interaction with relief: a 2.5d shape display. In UIST '11, ACM (2011), 541--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Macknik, S. L., King, M., Randi, J., Robbins, A., et al. Attention and awareness in stage magic: turning tricks into research. Nature Reviews Neuroscience 9, 11 (2008), 871--879.Google ScholarGoogle ScholarCross RefCross Ref
  27. MacLean, K. E., Snibbe, S. S., and Levin, G. Tagged handles: merging discrete and continuous manual control. In CHI '00, ACM (2000), 225--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. McGuffin, M., and Balakrishnan, R. Acquisition of expanding targets. In CHI '02, ACM (2002), 57--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Michelitsch, G., Williams, J., Osen, M., Jimenez, B., and Rapp, S. Haptic chameleon: a new concept of shape-changing user interface controls with force feedback. In CHI EA '04, ACM (2004), 1305--1308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Norman, D. A. The Psychology of Everyday Things. Basic Books, Inc., 1988.Google ScholarGoogle Scholar
  31. Pangaro, G., Maynes-Aminzade, D., and Ishii, H. The actuated workbench: computer-controlled actuation in tabletop tangible interfaces. In UIST '02, ACM (2002), 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Patten, J., and Ishii, H. Mechanical constraints as computational constraints in tabletop tangible interfaces. In CHI '07, ACM (2007), 809--818. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Poupyrev, I., Nashida, T., and Okabe, M. Actuation and tangible user interfaces: the vaucanson duck, robots, and shape displays. In TEI '07, ACM (2007), 205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Rasmussen, M. K., Pedersen, E. W., Petersen, M. G., and Hornbaek, K. Shape-changing interfaces: a review of the design space and open research questions. In CHI '12, ACM (2012), 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rekimoto, J., Ullmer, B., and Oba, H. Datatiles: a modular platform for mixed physical and graphical interactions. In CHI '01, ACM (2001), 269--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Reznik, D., and Canny, J. A flat rigid plate is a universal planar manipulator. In IEEE ICRA 1998, vol. 2, IEEE (1998), 1471--1477.Google ScholarGoogle ScholarCross RefCross Ref
  37. Salisbury, K., Conti, F., and Barbagli, F. Haptic rendering: introductory concepts. Computer Graphics and Applications, IEEE 24, 2 (2004), 24--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ullmer, B., Ishii, H., and Jacob, R. J. K. Token+constraint systems for tangible interaction with digital information. ACM Trans. Comput.-Hum. Interact. 12, 1 (Mar. 2005), 81--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Vaughan, L. C. Understanding movement. In CHI '97, ACM (1997), 548--549. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Vermeulen, J., Luyten, K., van den Hoven, E., and Coninx, K. Crossing the bridge over norman's gulf of execution: revealing feedforward's true identity. In CHI '13, ACM (2013), 1931--1940. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Weiss, M., Remy, C., and Borchers, J. Rendering physical effects in tabletop controls. In CHI '11, ACM (2011), 3009--3012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Weiss, M., Schwarz, F., Jakubowski, S., and Borchers, J. Madgets: actuating widgets on interactive tabletops. In UIST '10, ACM (2010), 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Weiss, M., Wacharamanotham, C., Voelker, S., and Borchers, J. Fingerflux: near-surface haptic feedback on tabletops. In UIST '11, ACM (2011), 615--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Khoshabeh, R., Hollan, J. D., and Borchers, J. Slap widgets: bridging the gap between virtual and physical controls on tabletops. In CHI '09, ACM (2009), 481--490. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. inFORM: dynamic physical affordances and constraints through shape and object actuation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        UIST '13: Proceedings of the 26th annual ACM symposium on User interface software and technology
        October 2013
        558 pages
        ISBN:9781450322683
        DOI:10.1145/2501988

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 October 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        UIST '13 Paper Acceptance Rate62of317submissions,20%Overall Acceptance Rate842of3,967submissions,21%

        Upcoming Conference

        UIST '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader