skip to main content
10.1145/2506583.2506610acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
tutorial

Improving discrimination of essential genes by modeling local insertion frequencies in transposon mutagenesis data

Authors Info & Claims
Published:22 September 2013Publication History

ABSTRACT

Transposon mutagenesis experiments enable the identification of essential genes in bacteria. Deep-sequencing of mutant libraries provides a large amount of high-resolution data on essentiality. Statistical methods developed to analyze this data have traditionally assumed that the probability of observing a transposon insertion is the same across the genome. This assumption, however, is inconsistent with the observed insertion frequencies from transposon mutant libraries of M. tuberculosis.

We propose a modified binomial model of essentiality that can characterize the insertion probability of individual genes in which we allow local variation in the background insertion frequency in different non-essential regions of the genome. Using the Metropolis-Hastings algorithm, samples of the posterior insertion probabilities are obtained for each gene, and the probability of each gene being essential is estimated. We compare our predictions to those of previous methods and show that, by taking into consideration local insertion frequencies, our method is capable of making more conservative predictions that better match what is experimentally known about essential and non-essential genes.

References

  1. S. G. Acinas, R. Sarma-Rupavtarm, V. Klepac-Ceraj, and M. F. Polz. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol., 71:8966--8969, Dec 2005.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Banu, N. Honore, B. Saint-Joanis, D. Philpott, M. C. Prevost, and S. T. Cole. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol. Microbiol., 44:9--19, Apr 2002.Google ScholarGoogle ScholarCross RefCross Ref
  3. N. J. Blades and K. W. Broman. Estimating the number of essential genes in a genome by random transposon mutagenesis. Technical Report MSU-CSE-00-2, Dept. of Biostatistics Working Papers, Johns Hopkins University, July 2002.Google ScholarGoogle Scholar
  4. S. T. Cole, R. Brosch, and J. Parkhill. Deciphering the biology of mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685):537--544, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. A. Dejesus, Y. J. Zhang, C. M. Sassetti, E. J. Rubin, J. C. Sacchettini, and T. R. Ioerger. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics, 29(6):695--703, Mar 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Domenech, M. B. Reed, and C. E. Barry. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun., 73:3492--3501, Jun 2005.Google ScholarGoogle ScholarCross RefCross Ref
  7. C. L. Gee, K. G. Papavinasasundaram, S. R. Blair, C. E. Baer, A. M. Falick, D. S. King, J. E. Griffin, H. Venghatakrishnan, A. Zukauskas, J. R. Wei, R. K. Dhiman, D. C. Crick, E. J. Rubin, C. M. Sassetti, and T. Alber. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci Signal, 5:ra7, 2012.Google ScholarGoogle Scholar
  8. J. E. Griffin, J. D. Gawronski, M. A. DeJesus, T. R. Ioerger, B. J. Akerley, and C. M. Sassetti. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog, 7(9):e1002251, 09 2011.Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Hasan, S. Daugelat, P. S. Rao, and M. Schreiber. Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput. Biol., 2(6):e61, Jun 2006.Google ScholarGoogle ScholarCross RefCross Ref
  10. G. Lamichhane, S. Tyagi, and W. R. Bishai. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect. Immun., 73(4):2533--2540, Apr 2005.Google ScholarGoogle ScholarCross RefCross Ref
  11. G. Lamichhane, M. Zignol, N. J. Blades, D. E. Geiman, A. Dougherty, J. Grosset, K. W. Broman, and W. R. Bishai. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: Application to mycobacterium tuberculosis. PNAS, 100(12):7213--7218, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  12. P. Muller, G. Parmigiani, and K. Rice. Fdr and bayesian multiple comparisons rules. In Proceedings of the ISBA 8th World Meeting on Bayesian Statistics, Benidorm, Spain, Juner 2006.Google ScholarGoogle Scholar
  13. C. M. Sassetti, D. H. Boyd, and E. J. Rubin. Comprehensive identification of conditionally essential genes in mycobacteria. PNAS, 98(22):12712--12717, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. M. Sassetti, D. H. Boyd, and E. J. Rubin. Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology, 48(1):77--84, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  15. C. M. Sassetti and E. J. Rubin. Genetic requirements for mycobacterial survival during infection. PNAS, 100(22):12989--12994, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  16. Y. J. Zhang, T. R. Ioerger, C. Huttenhower, J. E. Long, C. M. Sassetti, J. C. Sacchettini, and E. J. Rubin. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog., 8(9):e1002946, Sep 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. Zomer, P. Burghout, H. J. Bootsma, P. W. Hermans, and S. A. van Hijum. ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PLoS ONE, 7(8):e43012, 2012.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Improving discrimination of essential genes by modeling local insertion frequencies in transposon mutagenesis data

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        BCB'13: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics
        September 2013
        987 pages
        ISBN:9781450324342
        DOI:10.1145/2506583

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 September 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • tutorial
        • Research
        • Refereed limited

        Acceptance Rates

        BCB'13 Paper Acceptance Rate43of148submissions,29%Overall Acceptance Rate254of885submissions,29%
      • Article Metrics

        • Downloads (Last 12 months)1
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader