skip to main content
10.1145/2506583.2506610acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
tutorial

Improving discrimination of essential genes by modeling local insertion frequencies in transposon mutagenesis data

Published: 22 September 2013 Publication History

Abstract

Transposon mutagenesis experiments enable the identification of essential genes in bacteria. Deep-sequencing of mutant libraries provides a large amount of high-resolution data on essentiality. Statistical methods developed to analyze this data have traditionally assumed that the probability of observing a transposon insertion is the same across the genome. This assumption, however, is inconsistent with the observed insertion frequencies from transposon mutant libraries of M. tuberculosis.
We propose a modified binomial model of essentiality that can characterize the insertion probability of individual genes in which we allow local variation in the background insertion frequency in different non-essential regions of the genome. Using the Metropolis-Hastings algorithm, samples of the posterior insertion probabilities are obtained for each gene, and the probability of each gene being essential is estimated. We compare our predictions to those of previous methods and show that, by taking into consideration local insertion frequencies, our method is capable of making more conservative predictions that better match what is experimentally known about essential and non-essential genes.

References

[1]
S. G. Acinas, R. Sarma-Rupavtarm, V. Klepac-Ceraj, and M. F. Polz. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol., 71:8966--8969, Dec 2005.
[2]
S. Banu, N. Honore, B. Saint-Joanis, D. Philpott, M. C. Prevost, and S. T. Cole. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol. Microbiol., 44:9--19, Apr 2002.
[3]
N. J. Blades and K. W. Broman. Estimating the number of essential genes in a genome by random transposon mutagenesis. Technical Report MSU-CSE-00-2, Dept. of Biostatistics Working Papers, Johns Hopkins University, July 2002.
[4]
S. T. Cole, R. Brosch, and J. Parkhill. Deciphering the biology of mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685):537--544, 1998.
[5]
M. A. Dejesus, Y. J. Zhang, C. M. Sassetti, E. J. Rubin, J. C. Sacchettini, and T. R. Ioerger. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics, 29(6):695--703, Mar 2013.
[6]
P. Domenech, M. B. Reed, and C. E. Barry. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun., 73:3492--3501, Jun 2005.
[7]
C. L. Gee, K. G. Papavinasasundaram, S. R. Blair, C. E. Baer, A. M. Falick, D. S. King, J. E. Griffin, H. Venghatakrishnan, A. Zukauskas, J. R. Wei, R. K. Dhiman, D. C. Crick, E. J. Rubin, C. M. Sassetti, and T. Alber. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci Signal, 5:ra7, 2012.
[8]
J. E. Griffin, J. D. Gawronski, M. A. DeJesus, T. R. Ioerger, B. J. Akerley, and C. M. Sassetti. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog, 7(9):e1002251, 09 2011.
[9]
S. Hasan, S. Daugelat, P. S. Rao, and M. Schreiber. Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS Comput. Biol., 2(6):e61, Jun 2006.
[10]
G. Lamichhane, S. Tyagi, and W. R. Bishai. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect. Immun., 73(4):2533--2540, Apr 2005.
[11]
G. Lamichhane, M. Zignol, N. J. Blades, D. E. Geiman, A. Dougherty, J. Grosset, K. W. Broman, and W. R. Bishai. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: Application to mycobacterium tuberculosis. PNAS, 100(12):7213--7218, 2003.
[12]
P. Muller, G. Parmigiani, and K. Rice. Fdr and bayesian multiple comparisons rules. In Proceedings of the ISBA 8th World Meeting on Bayesian Statistics, Benidorm, Spain, Juner 2006.
[13]
C. M. Sassetti, D. H. Boyd, and E. J. Rubin. Comprehensive identification of conditionally essential genes in mycobacteria. PNAS, 98(22):12712--12717, 2001.
[14]
C. M. Sassetti, D. H. Boyd, and E. J. Rubin. Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology, 48(1):77--84, 2003.
[15]
C. M. Sassetti and E. J. Rubin. Genetic requirements for mycobacterial survival during infection. PNAS, 100(22):12989--12994, 2003.
[16]
Y. J. Zhang, T. R. Ioerger, C. Huttenhower, J. E. Long, C. M. Sassetti, J. C. Sacchettini, and E. J. Rubin. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog., 8(9):e1002946, Sep 2012.
[17]
A. Zomer, P. Burghout, H. J. Bootsma, P. W. Hermans, and S. A. van Hijum. ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PLoS ONE, 7(8):e43012, 2012.

Index Terms

  1. Improving discrimination of essential genes by modeling local insertion frequencies in transposon mutagenesis data

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      BCB'13: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics
      September 2013
      987 pages
      ISBN:9781450324342
      DOI:10.1145/2506583
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 September 2013

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Tutorial
      • Research
      • Refereed limited

      Conference

      BCB'13
      Sponsor:
      BCB'13: ACM-BCB2013
      September 22 - 25, 2013
      Wshington DC, USA

      Acceptance Rates

      BCB'13 Paper Acceptance Rate 43 of 148 submissions, 29%;
      Overall Acceptance Rate 254 of 885 submissions, 29%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 67
        Total Downloads
      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 17 Jan 2025

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media