skip to main content
10.1145/2506583.2512358acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
tutorial

Biomarkers in Immunology: from Concepts to Applications

Authors Info & Claims
Published:22 September 2013Publication History

ABSTRACT

In this paper, we summarized the challenges and promises of the study of immune biomarkers. We reviewed key concepts in biomarker discovery and discussed the framework for applying these concepts in the study of the immune system and its effects on the disease -- cancer, infection, allergy, immunodeficiencies, and autoimmunity. The immune system plays a special role in biomarker discovery since it interacts with all other systems in the human body and immune biomarkers are relevant for large number of diseases.

References

  1. Adamczyk-Poplawska M et al. 2011. Proteomics for development of vaccine. J Proteomics. 74(12), 2596-616.Google ScholarGoogle ScholarCross RefCross Ref
  2. Adams, N. et al. 2011. PIDO, the primary immunodeficiency disease ontology. Bioinformatics. 27(22), 3193--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anderson, K. S. and LaBaer, J. 2005. The sentinel within: exploiting the immune system for cancer biomarkers. J. Proteome Res. 4(4), 1123--33.Google ScholarGoogle ScholarCross RefCross Ref
  4. Armah, H. B. et al. 2007. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar J. 6, 147.Google ScholarGoogle ScholarCross RefCross Ref
  5. Arstila, T. P. et al. 1999. A direct estimate of the human alphabeta T cell receptor diversity. Science. 286(5441), 958--61.Google ScholarGoogle ScholarCross RefCross Ref
  6. Azuaje, F. 2010. Bioinformatics and biomarker discovery, omic data analysis for personalised medicine. Wiley-Blackwell.Google ScholarGoogle Scholar
  7. Barrallo-Gimeno, A. and Nieto, M. A. 2005. The Snail genes as inducers of cell movement and survival, implications in development and cancer. Development. 132(14), 3151--61.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bass, M. B. et al. 2010. Biomarkers as predictors of response to treatment with motesanib in patients with progressive advanced thyroid cancer. J Clin Endocrinol Metab. 95(11), 5018--27.Google ScholarGoogle ScholarCross RefCross Ref
  9. Bauer, J. W. et al. 2006. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 3(12), e491.Google ScholarGoogle ScholarCross RefCross Ref
  10. Bay-Jensen, A. C. et al. 2013. Circulating protein fragments of cartilage and connective tissue degradation are diagnostic and prognostic markers of rheumatoid arthritis and ankylosing spondylitis. PLoS One. 8(1), e54504.Google ScholarGoogle ScholarCross RefCross Ref
  11. Bielekova, B. and Martin, R. 2004. Development of biomarkers in multiple sclerosis. Brain. 127(Pt 7), 1463--78.Google ScholarGoogle ScholarCross RefCross Ref
  12. Biomarkers Definitions Working Group. 2001. Biomarkers and surrogate endpoints, preferred definitions and conceptual framework. Clin Pharmacol Ther. 69(3), 89--95.Google ScholarGoogle ScholarCross RefCross Ref
  13. Blüggel, M. et al. 2011 Toward protein biomarkers for allergy: CD4+ T cell proteomics in allergic and nonallergic subjects sampled in and out of pollen season. J Proteome Res. 10(4), 1558--70.Google ScholarGoogle ScholarCross RefCross Ref
  14. Boles, J. W. et al. 2003. Generation of protective immunity by inactivated recombinant staphylococcal enterotoxin B vaccine in nonhuman primates and identification of correlates of immunity. Clin Immunol. 108, 51--9.Google ScholarGoogle ScholarCross RefCross Ref
  15. Brusic V and August JT. 2004. The changing field of vaccine development in the genomics era. Pharmacogenomics. 5(6), 597--600.Google ScholarGoogle ScholarCross RefCross Ref
  16. Brusic V et al. 1998. Data learning, understanding biological data. In Knowledge Sharing Across Biological and Medical Knowledge Based Systems, Merrill G., Pathak D.K. Ed. AAAI Press, 12--19.Google ScholarGoogle Scholar
  17. Brusic V et al. 2005. Information technologies for vaccine research. Expert Rev Vaccines. 4(3), 407--17.Google ScholarGoogle ScholarCross RefCross Ref
  18. Chen, R et al. 2013. A bayesian diagnostic system to differentiate glioblastomas from solitary brain metastases. Neuroradiol J. 26(2), 175--83.Google ScholarGoogle ScholarCross RefCross Ref
  19. Chen, YD et al. 2004. Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clin Cancer Res. 10(24), 8380--5.Google ScholarGoogle ScholarCross RefCross Ref
  20. Chintamaneni, M. and Bhaskar, M. 2012. Biomarkers in Alzheimer's disease, a review. ISRN Pharmacol. 984786.Google ScholarGoogle Scholar
  21. Cohen, I. R. 2007. Biomarkers, self-antigens and the immunological homunculus. J Autoimmun. 29:246--9.Google ScholarGoogle ScholarCross RefCross Ref
  22. Cromme, F. V. et al. 1994. Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J Exp Med. 179(1), 335--40.Google ScholarGoogle ScholarCross RefCross Ref
  23. Davis, M. M. 2008. A prescription for human immunology. Immunity. 29(6), 835--8.Google ScholarGoogle ScholarCross RefCross Ref
  24. DelaRosa, O. et al. 2006. Immunological biomarkers of ageing in man: changes in both innate and adaptive immunity are associated with health and longevity. Biogerontology. 7(5-6), 471--81.Google ScholarGoogle ScholarCross RefCross Ref
  25. DeNardo, D. G. et al. 2010. Interactions between lymphocytes and myeloid cells regulate pro- versus antitumor immunity. Cancer Metastasis Rev. 29(2), 309--16.Google ScholarGoogle ScholarCross RefCross Ref
  26. Doecke, J. D. et al. 2012. Alzheimer's disease neuroimaging initiative. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol. 69(10), 1318--25.Google ScholarGoogle ScholarCross RefCross Ref
  27. Draper N and Smith H. 1981. Applied Regression Analysis, 2d Edition, New York, John Wiley & Sons, Inc.Google ScholarGoogle Scholar
  28. Eifan, A. O. et al. 2011. Long-term clinical and immunological effects of allergen immunotherapy. Curr Opin Allergy Clin Immunol. 11(6):586--93.Google ScholarGoogle ScholarCross RefCross Ref
  29. Enríquez-de-Salamanca, A., Bonini, S., and Calonge, M. 2012. Molecular and cellular biomarkers in dry eye disease and ocular allergy. Curr Opin Allergy Clin Immunol. 12, 523--33.Google ScholarGoogle ScholarCross RefCross Ref
  30. Feng, Z. et al. 2013. The early detection research network's specimen reference sets, paving the way for rapid evaluation of potential biomarkers. Clin Chem. 59(1), 68--74.Google ScholarGoogle ScholarCross RefCross Ref
  31. Franco, L. M. et al. 2013. Integrative genomic analysis of the human immune response to influenza vaccination. Elife. 2, e00299.Google ScholarGoogle ScholarCross RefCross Ref
  32. Frankenstein, Z. et al. 2006. The immune-body cytokine network defines a social architecture of cell interactions. Biol Direct. 1, 32.Google ScholarGoogle ScholarCross RefCross Ref
  33. Gibson, D. S. et al. 2010. Diagnostic and prognostic biomarker discovery strategies for autoimmune disorders. J Proteomics. 73(6), 1045--60.Google ScholarGoogle ScholarCross RefCross Ref
  34. Gnatenko, D. V. et al. 2010. Class prediction models of thrombocytosis using genetic biomarkers. Blood. 115(1), 7--14.Google ScholarGoogle ScholarCross RefCross Ref
  35. Graham WG. 2009. Missing data analysis, making it work in the real world. Annu. Rev. Psychol. 60, 549--76.Google ScholarGoogle ScholarCross RefCross Ref
  36. Grivennikov, S. I. et al. 2010. Immunity, inflammation, and cancer. Cell. 140(6), 883--99.Google ScholarGoogle ScholarCross RefCross Ref
  37. Habermann K et al. 2009. The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int J Cancer. 124(7), 1552--64.Google ScholarGoogle ScholarCross RefCross Ref
  38. Haight T and Jagust J. 2012. Alzheimer's Disease Neuroimaging Initiative, relative contributions of biomarkers in Alzheimer's disease. Ann Epidemiol. 22, 868--75.Google ScholarGoogle ScholarCross RefCross Ref
  39. Hamilton, J. A. and Tak, P. P. 2009. The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis Rheum. 60(5), 1210--21.Google ScholarGoogle ScholarCross RefCross Ref
  40. Hanahan, D and Weinberg, R. A. 2011. Hallmarks of cancer, the next generation. Cell. 144(5), 646--74.Google ScholarGoogle ScholarCross RefCross Ref
  41. Heo, C. K. et al. 2012. Tumor-associated autoantibodies as diagnostic and prognostic biomarkers. BMB Rep 45(12), 677--85.Google ScholarGoogle ScholarCross RefCross Ref
  42. Hicklin, D. J. et al. 1999. HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 5(4), 178--86.Google ScholarGoogle ScholarCross RefCross Ref
  43. Hocking, R. 1976. The Analysis and Selection of Variables in Linear Regression. Biometrics. 32(1), 1--49.Google ScholarGoogle ScholarCross RefCross Ref
  44. Hollevoet, K. et al. 2011. Serial measurements of mesothelioma serum biomarkers in asbestos-exposed individuals, a prospective longitudinal cohort study. J Thorac Oncol. 6(5), 889--95.Google ScholarGoogle ScholarCross RefCross Ref
  45. Hooks, J. J. et al. 1979. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med. 301(1), 5--8.Google ScholarGoogle ScholarCross RefCross Ref
  46. Huang, B. et al. 2005. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 65(12), 5009--14.Google ScholarGoogle ScholarCross RefCross Ref
  47. Huang, H.C. 2009. Designing a knowledge-based system for strategic planning, a balanced scorecard perspective. Expert Systems Applicat. 36, 209--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Huang, Z. et al. 2009. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of systemic lupus erythematosus. Rheumatology (Oxford). 48(6), 626--31.Google ScholarGoogle ScholarCross RefCross Ref
  49. Hulka, B. S. 1990. Overview of biological markers. In Biological markers in epidemiology, Hulka, B. S., Griffith, J. D., Wilcosky, T. C. Ed. New York, Oxford University Press, 3--15.Google ScholarGoogle Scholar
  50. Ibelgaufts, H. 2013. COPE: Cytokines Online Pathfinder Encyclopedia. Version 31.4. DOI=http://www.copewithcytokines.de.Google ScholarGoogle Scholar
  51. Jacobsen, M. et al. 2007. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl). 85(6), 613--21.Google ScholarGoogle ScholarCross RefCross Ref
  52. Janeway, C. A. and Jr Medzhitov, R. 2002. Innate immune recognition. Annu Rev Immunol. 20, 197--216.Google ScholarGoogle ScholarCross RefCross Ref
  53. Jerne, N. K. 1993. The generative grammar of the immune system. Scand J Immunol. 38, 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  54. Joyce, A. R. and Palsson, B. Ø. 2006. The model organism as a system, integrating 'omics' data sets. Nat Rev Mol Cell Biol. 7(3), 198--210.Google ScholarGoogle ScholarCross RefCross Ref
  55. Kharitonov, S. A. and Barnes, P. J. 2006. Exhaled biomarkers. Chest. 130(5), 1541--6.Google ScholarGoogle ScholarCross RefCross Ref
  56. Kim, R. et al. 2006. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 66(11), 5527--36.Google ScholarGoogle ScholarCross RefCross Ref
  57. Kirouac, D. C. et al. 2010. Dynamic interaction networks in a hierarchically organized tissue. Mol Syst Biol. 6, 417.Google ScholarGoogle ScholarCross RefCross Ref
  58. Klymkowsky, M. W. and Savagner, P. 2009. Epithelial-mesenchymal transition, a cancer researcher's conceptual friend and foe. Am J Pathol. 174(5), 1588--93.Google ScholarGoogle ScholarCross RefCross Ref
  59. Kuller, L. H. et al. 2008. INSIGHT SMART Study Group. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 5(10), e203.Google ScholarGoogle ScholarCross RefCross Ref
  60. Kwon D et al. 2008. A novel wavelet-based thresholding method for the pre-processing of mass spectrometry data that accounts for heterogeneous noise. Proteomics. 8, 3019--29.Google ScholarGoogle ScholarCross RefCross Ref
  61. Lai, D. et al. 2003. Sample size for biomarker studies, more subjects or more measurements per subject? Ann Epidemiol. 13(3), 204--8.Google ScholarGoogle ScholarCross RefCross Ref
  62. Lin, K. C. et al. 2007. Discriminant analysis of serum inflammatory biomarkers which differentiate pediatric appendicitis from other acute abdominal diseases. Acta Paediatr Taiwan. 48(3), 125--30.Google ScholarGoogle Scholar
  63. Liu, C. et al. 2008. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol Med. 14(9-10), 575--81.Google ScholarGoogle ScholarCross RefCross Ref
  64. Liu, C. et al. 2011. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of colorectal cancer. Int J Med Sci. 8(1), 39--47.Google ScholarGoogle ScholarCross RefCross Ref
  65. Liu, Z., Jiang F., Tian, G., Wang, S., Sato, F., Meltzer, S. J., and Tan, M. 2007. Sparse logistic regression with Lp penalty for biomarker identification. Stat Appl Genet Mol Biol. 6(1), 6.Google ScholarGoogle ScholarCross RefCross Ref
  66. Luterman, J. D. et al. 2000. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch Neurol. 57(8), 1153--60.Google ScholarGoogle ScholarCross RefCross Ref
  67. Macedo, P. et al. 2009. Inflammatory biomarkers in airways of patients with severe asthma compared with non-severe asthma. Clin Exp Allergy. 39(11), 1668--76.Google ScholarGoogle ScholarCross RefCross Ref
  68. Mattsson, N. and Zetterberg, H. 2009. Alzheimer's disease and CSF biomarkers, key challenges for broad clinical applications. Biomark Med. 3(6), 735--7.Google ScholarGoogle ScholarCross RefCross Ref
  69. Mayeux, R. 2004. Biomarkers: potential uses and limitations. NeuroRx. 1(2), 182--8.Google ScholarGoogle ScholarCross RefCross Ref
  70. Merbl, Y. et al. 2007. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. 117(3):712--8.Google ScholarGoogle ScholarCross RefCross Ref
  71. Moffitt KL et al. 2013. Inflammatory and immunological biomarkers are not related to survival in adults with Cystic Fibrosis. J Cyst Fibros. S1569--1993(13).Google ScholarGoogle Scholar
  72. Mrak. R. E. and Griffin, W. S. T. 2005. Potential Inflammatory biomarkers in Alzheimer's disease. J Alzheimers Dis. 8(4), 369--375.Google ScholarGoogle ScholarCross RefCross Ref
  73. Naylor, S. 2003. Biomarkers: current perspectives and future prospects. Expert Rev Mol Diagn. 3(5), 525--9.Google ScholarGoogle ScholarCross RefCross Ref
  74. Norris J et al. 2007. Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int J Mass Spectrom. 260, 212--21.Google ScholarGoogle ScholarCross RefCross Ref
  75. Novelli G, et al. 2008. Genetic tests and genomic biomarkers: regulation, qualification and validation. Clin Cases Miner Bone Metab. 5(2), 149--54.Google ScholarGoogle Scholar
  76. Novellino, L., Castelli, C., and Parmiani, G. 2005. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 54(3), 187--207.Google ScholarGoogle ScholarCross RefCross Ref
  77. Olsen, L. R., Zhang, G. L., Olsen, L. R., Reinherz, E. L., and Brusic, V. 2011. FLAVIdB, a data mining system for knowledge discovery in flaviviruses with direct applications in immunology and vaccinology. Immunome Res. 7(3), 1--9.Google ScholarGoogle Scholar
  78. Pappalardo, F. et al. 2009. ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design and optimization. Brief Bioinform. 10(3), 330--40.Google ScholarGoogle ScholarCross RefCross Ref
  79. Parida, S. K. and Kaufmann, S. H. 2010. The quest for biomarkers in tuberculosis. Drug Discov Today. 15(3-4), 148--57.Google ScholarGoogle ScholarCross RefCross Ref
  80. Pascual, V. et al. 2010. A genomic approach to human autoimmune diseases. Annu Rev Immunol. 28, 535--71.Google ScholarGoogle ScholarCross RefCross Ref
  81. Poland, G. A. et al. 2013. Vaccinomics, adversomics, and the immune response network theory: Individualized vaccinology in the 21st century. Semin Immunol. 13, 00023--7.Google ScholarGoogle Scholar
  82. Polyak, K., Weinberg, R. A. 2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 9(4), 265--73.Google ScholarGoogle ScholarCross RefCross Ref
  83. Prescott, S. L. et al, 2003. The value of perinatal immune responses in predicting allergic disease at 6 years of age. Allergy. 58(11):1187--94.Google ScholarGoogle ScholarCross RefCross Ref
  84. Price JV et al. 2013. Characterization of influenza vaccine immunogenicity using influenza antigen microarrays. PLoS One. 8(5), e64555.Google ScholarGoogle ScholarCross RefCross Ref
  85. Prince, H. E. 2005. Biomarkers for diagnosing and monitoring autoimmune diseases. Biomarkers. 10(Suppl 1), S44--9.Google ScholarGoogle ScholarCross RefCross Ref
  86. Puck, J. M. 2012. Laboratory technology for population-based screening for severe combined immunodeficiency in neonates, the winner is T-cell receptor excision circles. J Allergy Clin Immunol. 129(3), 607--16.Google ScholarGoogle ScholarCross RefCross Ref
  87. Robinson, J. et al. 2013. The IMGT/HLA database. Nucleic Acids Res. 41(Database issue), D1222--7.Google ScholarGoogle Scholar
  88. Sadun, R. E. et al. 2007. Immune signatures of murine and human cancers reveal unique mechanisms of tumor escape and new targets for cancer immunotherapy. Clin Cancer Res. 13(13), 4016--25.Google ScholarGoogle ScholarCross RefCross Ref
  89. Saeys, Y., Inza, I., and Larrañaga, P. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics. 23(19), 2507--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Sawyers, C. L. 2008. The cancer biomarker problem. Nature. 452(7187), 548--52.Google ScholarGoogle ScholarCross RefCross Ref
  91. Schetter, A. J. et al. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 31, 37--49.Google ScholarGoogle Scholar
  92. Seib KL et al. 2012. Developing vaccines in the era of genomics, a decade of reverse vaccinology. Clin Microbiol Infect. 18(Suppl 5), 109--16.Google ScholarGoogle ScholarCross RefCross Ref
  93. Shi, Y. et al. 2009. Sparse discriminant analysis for breast cancer biomarker identification and classification. Progress Natural Sci. 19(11), 1635--41.Google ScholarGoogle ScholarCross RefCross Ref
  94. Sicherer, S. H. and Sampson, H. A. 2009. Food allergy: recent advances in pathophysiology and treatment. Annu Rev Med. 60:261--77.Google ScholarGoogle ScholarCross RefCross Ref
  95. Smyth, G. K. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 3.Google ScholarGoogle Scholar
  96. Snijders, C. C. P., Matzat, U., and Reips, U. D. 2012. Big data: big gaps of knowledge in the field of Internet Science. Int J Internet Sci. 7(1), 1--5.Google ScholarGoogle Scholar
  97. Suarez-Alvarez B., Rodriguez, R. M., Fraga, M. F., López-Larrea, C. 2012. DNA methylation: a promising landscape for immune system-related diseases. Trends Genet. 28(10), 506--14.Google ScholarGoogle ScholarCross RefCross Ref
  98. Thomas, D. A. and Massagué, J. 2005. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 8(5), 369--80.Google ScholarGoogle ScholarCross RefCross Ref
  99. Tusher, V. G. et al. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 98, 5116--5121.Google ScholarGoogle ScholarCross RefCross Ref
  100. Vaughn, H. A. et al. 2004. The humoral immune response to head and neck cancer antigens as defined by the serological analysis of tumor antigens by recombinant cDNA expression cloning. Cancer Immunity 4, 5.Google ScholarGoogle Scholar
  101. Vigneron, N., Stroobant, V., Van den Eynde, B. J., and van der Bruggen, P. 2013. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 13, 15Google ScholarGoogle Scholar
  102. Wang, T. et al. 2004. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 10(1), 48--54.Google ScholarGoogle ScholarCross RefCross Ref
  103. Wu, Z. 2009. A review of statistical methods for preprocessing oligonucleotide microarrays. Stat Methods Med Res. 18(6), 533--41.Google ScholarGoogle ScholarCross RefCross Ref
  104. Xu, Q. W. et al. 2012. An integrated genome-wide approach to discover tumor-specific antigens as potential immunologic and clinical targets in cancer. Cancer Res. 72(24), 6351--61.Google ScholarGoogle ScholarCross RefCross Ref
  105. Yan, S. D. et al. 1997. Amyloid-β peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor, a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci USA. 94, 5296--301.Google ScholarGoogle ScholarCross RefCross Ref
  106. Yang C, He Z, Yu W. 2009. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics. 10, 4.Google ScholarGoogle ScholarCross RefCross Ref
  107. Yang, I. S. et al. 2008. IDBD, infectious disease biomarker database. Nucleic Acids Res. 36, D455--60.Google ScholarGoogle ScholarCross RefCross Ref
  108. Yilmaz, M. and Christofori, G. 2009. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28(1-2), 15--33.Google ScholarGoogle ScholarCross RefCross Ref
  109. Yousef M et al. 2009. Classification and biomarker identification using gene network modules and support vector machines. BMC Bioinformatics. 10, 337.Google ScholarGoogle ScholarCross RefCross Ref
  110. Yu W et al. 2006. Statistical methods in proteomics. In Springer Handbook of Engineering Statistics, Springer London, 623--38.Google ScholarGoogle Scholar
  111. Yu, Y. et al. 2005. Prediction of pancreatic cancer by serum biomarkers using surface-enhanced laser desorption/ionization-based decision tree classification. Oncology. 68(1), 79--86.Google ScholarGoogle ScholarCross RefCross Ref
  112. Yuan, Z. and Ghosh, D. 2008. Combining multiple biomarker models in logistic regression. Biometrics. 64(2), 431--439.Google ScholarGoogle ScholarCross RefCross Ref
  113. Zabel, M. et al. 2012. Assessing candidate serum biomarkers for Alzheimer's disease, a longitudinal study. J Alzheimers Dis. 30(2), 311--21.Google ScholarGoogle ScholarCross RefCross Ref
  114. Zea, A. H. et al. 2005. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients, a mechanism of tumor evasion. Cancer Res. 65(8), 3044--8.Google ScholarGoogle ScholarCross RefCross Ref
  115. Zeger SL and Liang KY. 1992. An overview of methods for the analysis of longitudinal data. Stat Med. 11(14-15), 1825--39.Google ScholarGoogle ScholarCross RefCross Ref
  116. Zhang J et al. 2008. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol. 129(4), 526--9.Google ScholarGoogle ScholarCross RefCross Ref
  117. Zhang, G. L., Olsen, L. R., Kudahl, U. J., Chitkushev, L. T., and Brusic, V. 2013. Streamlining the development of immunological knowledge bases. Methods Mol Biol. (in press).Google ScholarGoogle Scholar
  118. Zhang, Y. et al. 2012. Systematic analysis of the gene expression in the livers of nonalcoholic steatohepatitis, implications on potential biomarkers and molecular pathological mechanism. PLoS One. 7, e51131.Google ScholarGoogle ScholarCross RefCross Ref
  119. Zheng, G. and Joo, J. 2010. Statistical tests for biomarker development with applications to genetics data. Encyclopedia of Biopharmaceutical Statistic, 1294--9.Google ScholarGoogle Scholar
  120. Zitvogel, L. et al. 2010. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol. 8(3):151--60.Google ScholarGoogle ScholarCross RefCross Ref
  121. Zou, W. 2006. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 6(4), 295--307.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Biomarkers in Immunology: from Concepts to Applications

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      BCB'13: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics
      September 2013
      987 pages
      ISBN:9781450324342
      DOI:10.1145/2506583

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 September 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial
      • Research
      • Refereed limited

      Acceptance Rates

      BCB'13 Paper Acceptance Rate43of148submissions,29%Overall Acceptance Rate254of885submissions,29%
    • Article Metrics

      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader