skip to main content

Algorithm 934: Fortran 90 subroutines to compute Mathieu functions for complex values of the parameter

Published:03 October 2013Publication History
Skip Abstract Section

Abstract

Software to compute angular and radial Mathieu functions is provided in the case that the parameter q is a complex variable and the independent variable x is real. After an introduction on the notation and the definitions of Mathieu functions and their related properties, Fortran 90 subroutines to compute them are described and validated with some comparisons. A sample application is also provided.

Skip Supplemental Material Section

Supplemental Material

References

  1. Abramovitz, M. and Andstegun, I. A. 1970. Handbook of Mathematical Functions. Dover Publications, Inc., New York.Google ScholarGoogle Scholar
  2. Akgol, O., Daniele, V., Erricolo, D., and Anduslenghi, P. 2011. Radiation from a line source shielded by a confocal elliptic layer of DNG metamaterial.IEEE Antennas Wirel. Propag. Lett.10, 943--946.Google ScholarGoogle ScholarCross RefCross Ref
  3. Akgol, O., Erricolo, D., and Uslenghi, P. 2011a. Electromagnetic radiation and scattering for a gap in a corner backed by a cavity filled with DNG metamaterial. Radio Sci. 46, RS4005. doi:10.1029/2010RS004471.Google ScholarGoogle Scholar
  4. Akgol, O., Erricolo, D., and Uslenghi, P. 2011b. Exact imaging by an elliptic lens. IEEE Antennas Wirel. Propag. Lett. 10, 639--642.Google ScholarGoogle ScholarCross RefCross Ref
  5. Alhargan, F. A. 2001. Algorithms for the computation of all Mathieu functions of integer order. ACM Trans. Math. Softw. 26, 3, 390--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Amos, D. E. 1986. Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Softw. 12, 265--273. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Baker, L. 1992. Mathematical Function Handbook. McGraw-Hill. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bakker, M. and Kuhlman, K. 2011. Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation. Adv. Water Resources 34, 9, (Special Issue on New Computational Methods and Software Tools), 1186--1194.Google ScholarGoogle Scholar
  9. Baktur, R., Pearson, L. W., and Ballato, J. 2010. An analysis of coupling between a whispering gallery mode laser in an elliptical microring and the dominant mode in the coaxially oriented elliptical optical fiber. J. Appl. Physics 107, 2. DOI: 10.1063/1.3284947.Google ScholarGoogle ScholarCross RefCross Ref
  10. Balanis, C. A. 1989. Advanced Engineering Electromagnetics. Wiley, New York.Google ScholarGoogle Scholar
  11. Berardi, C., Erricolo, D., and Uslenghi, P. 2004. Exact dipole radiation for an oblate spheroidal cavity filled with isorefractive material and aperture-coupled to a half space. IEEE Trans. Antennas Propag. 52, 9, 2205--2213.Google ScholarGoogle ScholarCross RefCross Ref
  12. Blanch, G. 1966. Numerical aspects of Mathieu eigenvalues. In Rend. Circ. Mat. Paler. 2 Series, vol. 15. 51--97.Google ScholarGoogle Scholar
  13. Blanch, G. and Clemm, D. 1969. Mathieu's Equation For Complex Parameters. Tables Of Characteristic Values. Aerospace Research Laboratories.Google ScholarGoogle Scholar
  14. Blanch, G. and Rhodes, I. 1955. Tables of characteristic values of Mathieu's equation for large values of the parameter. J. Washington Acad. Sci. 45, 6, 166--196.Google ScholarGoogle Scholar
  15. Bowman, J. J., Senior, T. B. A., and Uslenghi, P. L. E. 1987. Electromagnetic and Acoustic Scattering by Simple Shapes. Hemisphere Publishing Corporation, New York.Google ScholarGoogle Scholar
  16. Canta, S. and Erricolo, D. 2008. Exact 2D scattering analysis of a slot backed by a semielliptical cavity and covered by a multilayer diaphragm. Radio Sci. doi:10.1029/2007RS003809.Google ScholarGoogle Scholar
  17. Caorsi, S., Pastorino, M., and M. Raffetto. 1997. Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: Series solution in terms of Mathieu functions. IEEE Trans. Antennas Propag. 45, 6, 926--935.Google ScholarGoogle ScholarCross RefCross Ref
  18. Caorsi, S., Pastorino, M., and Raffetto, M. 1998. Electromagnetic scattering by weakly lossy multilayer elliptic cylinders. IEEE Trans. Antennas Propag. 46, 11, 1750--1751.Google ScholarGoogle ScholarCross RefCross Ref
  19. Caorsi, S., Pastorino, M., and Raffetto, M. 1999a. Electromagnetic scattering by a conducting strip with a multilayer elliptic dielectric coating. IEEE Trans. Electromagn. Compat. 41, 4, 335--343.Google ScholarGoogle ScholarCross RefCross Ref
  20. Caorsi, S., Pastorino, M., and Raffetto, M. 1999b. EM field prediction inside lossy multilayer elliptic cylinders for biological-body modeling and numerical-procedure testing. IEEE Trans. Biomed. Eng. 46, 11, 1304--1309.Google ScholarGoogle ScholarCross RefCross Ref
  21. Clemm, D. S. 1969. Algorithm 352 Characteristic values and associated solutions of Mathieu's differential equation {S22}. Comm. ACM 12, 7, 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Clemm, D. S. 1970. Remark on algorithm 352 {S22} Characteristic values and associated solutions of Mathieu's differential equation. Comm. ACM 13, 12, 750. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Erricolo, D. 2003. Acceleration of the convergence of series containing Mathieu functions using Shanks transformation. IEEE Antennas Wirel. Propag. Lett. 2, 58--61.Google ScholarGoogle ScholarCross RefCross Ref
  24. Erricolo, D. 2006. Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch's algorithm. ACM Trans. Math. Software 32, 4, 622--634. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Erricolo, D., Canta, S. M., Hayvaci, H. T., and Albani, M. 2008. Experimental and theoretical validation for the incremental theory of diffraction. IEEE Trans. Antennas Propag. 56, 8, 2563--2571.Google ScholarGoogle ScholarCross RefCross Ref
  26. Erricolo, D., Lockard, M., Butler, C., and Uslenghi, P. 2005a. Currents on conducting surfaces of a semielliptical-channel-backed slotted screen in an isorefractive environment. IEEE Trans. Antennas Propag. 53, 7, 2350--2356.Google ScholarGoogle ScholarCross RefCross Ref
  27. Erricolo, D., Lockard, M. D., Butler, C. M., and Uslenghi, P. L. E. 2005b. Numerical analysis of penetration, radiation, and scattering for a 2D slotted semielliptical channel filled with isorefractive material. PIER 53, 69--89.Google ScholarGoogle ScholarCross RefCross Ref
  28. Erricolo, D. and Uslenghi, P. 2005a. Exact radiation for dipoles on metallic spheroids at the interface between isorefractive half-spaces. IEEE Trans. Antennas Propag. 53, 12, 3974--3981.Google ScholarGoogle ScholarCross RefCross Ref
  29. Erricolo, D., Uslenghi, P., Elnour, B., and Mioc, F. 2006. Scattering by a blade on a metallic plane. Electromagnetics 26, 1, 57--71.Google ScholarGoogle ScholarCross RefCross Ref
  30. Erricolo, D. and Uslenghi, P. L. E. 2004. Exact radiation and scattering for an elliptic metal cylinder at the interface between isorefractive half-spaces. IEEE Trans. Antennas Propag. 52, 9, 2214--2225.Google ScholarGoogle ScholarCross RefCross Ref
  31. Erricolo, D. and Uslenghi, P. L. E. 2005b. Penetration, radiation, and scattering for a cavity-backed gap in a corner. IEEE Trans. Antennas Propag. 53, 8, 2738--2748.Google ScholarGoogle ScholarCross RefCross Ref
  32. Frisch, M. J. 1972. Remark on algorithm 352 {S22} Characteristic values and associated solutions of Mathieu's differential equation. Comm. ACM 15, 12, 1074.Google ScholarGoogle Scholar
  33. Gil, A., Segura, J., and Temme, N. 2011. Basic methods for computing special functions. In Recent Advances in Computational and Applied Mathematics, T. E. Simos, Ed., Springer, 67--121.Google ScholarGoogle Scholar
  34. Gupta, S., Poulikakos, D., and Kurtcuoglu, V. 2008. Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid. Physics of Fluids 20, 9. DOI: 10.1063/1.2988858.Google ScholarGoogle ScholarCross RefCross Ref
  35. Hodge, D. B. 1972. The calculation of the eigenvalues and eigenvectors of Mathieus equation. NASA contractor report, The Ohio State University, Columbus, OH.Google ScholarGoogle Scholar
  36. IMSL 1994. IMSL Fortran Subroutines for Mathematical Applications. Visual Numerics, Inc.Google ScholarGoogle Scholar
  37. Larsen, T., Erricolo, D., and Uslenghi, P. 2008. New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comput. 87, 255--274.Google ScholarGoogle Scholar
  38. Mathieu, E. L. 1868. Memoire sur le mouvement vibratoire d'une membrane de forme elliptique. Jour. de Math. Pures et Appliquées (Jour. de Liouville) 13, 137--203.Google ScholarGoogle Scholar
  39. McLachlan, N. W. 1964. Theory and Application of Mathieu Functions. Dover Publications, New York.Google ScholarGoogle Scholar
  40. Meixner, J. and Schafke, F. W. 1954. Mathieusche Funktionen und Sphäroidfunktionen. Springer, Berlin.Google ScholarGoogle Scholar
  41. Moon, P. and Spencer, D. 1961. Field Theory Handbook Including Coordinate Systems Differential Equations and Their Solutions. Springer.Google ScholarGoogle Scholar
  42. National Bureau of Standards. 1951. Tables Relating to Mathieu Functions. Columbia University Press, New York.Google ScholarGoogle Scholar
  43. Olshansky, Y. and Turkel, E. 2008. The inverse problem of an impenetrable sound-hard body in acoustic scattering. J. Physics: Conference Series 135, 1, 012079.Google ScholarGoogle ScholarCross RefCross Ref
  44. Rengarajan, S. R. and Lewis, J. 1980. Mathieu functions of integraf orders and real arguments. IEEE Trans. Microw. Theory Tech. 28, 3, 276--277.Google ScholarGoogle ScholarCross RefCross Ref
  45. Shirts, R. B. 1993a. Algorithm 721 MTIEU1 and MTIEU2: Two subroutines to compute eigenvalues and solutions to Mathieu's differential equation for noninteger order. ACM Trans. Math. Softw. 19, 3, 391--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Shirts, R. B. 1993b. The computation of eigenvalues and solutions of Mathieu's differential equation for noninteger order. ACM Trans. Math. Softw. 19, 3, 377--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Staff of the Computation Laboratory. 1967. Tables Relating to Mathieu Functions 2nd Ed. Applied Mathematics Series. U.S. Government Printing Office, Washington, D.C.Google ScholarGoogle Scholar
  48. Stratton, J. A. 1941. Electromagnetic Theory. McGraw-Hill, New York.Google ScholarGoogle Scholar
  49. Valentino, M. and Erricolo, D. 2006. Exact two-dimensional scattering from a slot in a ground plane backed by a semielliptical cavity and covered with an isorefractive diaphragm. Radio Sci. 42, RS6S12. doi:10.1029/2006RS003547.Google ScholarGoogle Scholar
  50. Valentino, M. and Erricolo, D. 2007. Exact radiation of a dipole in the presence of a circular aperture in a ground plane backed by a spheroidal cavity and covered with an isorefractive diaphragm. Radio Sci. 42. RS6S13, doi:10.1029/2006RS003548.Google ScholarGoogle Scholar
  51. Wolfram, S. 2003. The Mathematica® Book 5th Ed. Wolfram Media. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zhang, S. and Jin, J.-M. 1996. Computation of Special Functions. Wiley, New York.Google ScholarGoogle Scholar

Index Terms

  1. Algorithm 934: Fortran 90 subroutines to compute Mathieu functions for complex values of the parameter

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Mathematical Software
            ACM Transactions on Mathematical Software  Volume 40, Issue 1
            September 2013
            165 pages
            ISSN:0098-3500
            EISSN:1557-7295
            DOI:10.1145/2513109
            Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 3 October 2013
            • Accepted: 1 April 2013
            • Revised: 1 December 2012
            • Received: 1 December 2011
            Published in toms Volume 40, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader