skip to main content
research-article

Geometry and context for semantic correspondences and functionality recognition in man-made 3D shapes

Published:08 October 2013Publication History
Skip Abstract Section

Abstract

We address the problem of automatic recognition of functional parts of man-made 3D shapes in the presence of significant geometric and topological variations. We observe that under such challenging circumstances, the context of a part within a 3D shape provides important cues for learning the semantics of shapes. We propose to model the context as structural relationships between shape parts and use them, in addition to part geometry, as cues for functionality recognition. We represent a 3D shape as a graph interconnecting parts that share some spatial relationships. We model the context of a shape part as walks in the graph. Similarity between shape parts can then be defined as the similarity between their contexts, which in turn can be efficiently computed using graph kernels. This formulation enables us to: (1) find part-wise semantic correspondences between 3D shapes in a nonsupervised manner and without relying on user-specified textual tags, and (2) design classifiers that learn in a supervised manner the functionality of the shape components. We specifically show that the performance of the proposed context-aware similarity measure in finding part-wise correspondences outperforms geometry-only-based techniques and that contextual analysis is effective in dealing with shapes exhibiting large geometric and topological variations.

Skip Supplemental Material Section

Supplemental Material

a150-sidebyside.mp4

mp4

13.4 MB

References

  1. Aleotti, J. and Caselli, S. 2012. A 3d shape segmentation approach for robot grasping by parts. Robot. Auton. Syst. 60, 3, 358--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Attene, M., Robbiano, F., Spagnuolo, M., and Falcidieno, B. 2009. Characterization of 3d shape parts for semantic annotation. Comput.-Aid. Des. 41, 10, 756--763. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Au, O. K.-C., Tai, C.-L., Cohen-Or, D., Zheng, Y., and Fu, H. 2010. Electors voting for fast automatic shape correspondence. Comput. Graph. Forum 29. 645--654.Google ScholarGoogle Scholar
  4. Bach, F. R., Thibaux, R., and Jordan, M. I. 2005. Computing regularization paths for learning multiple kernels. In Advances in Neural Information Processing Systems (NIPS'05).Google ScholarGoogle Scholar
  5. Bohg, J. and Kragic, D. 2009. Grasping familiar objects using shape context. In International Conference on Advanced Robotics.Google ScholarGoogle Scholar
  6. Catalano, C. E., Mortara, M., Spagnuolo, M., and Falcidieno, B. 2011. Semantics and 3d media: Current issues and perspectives. Comput. Graph. 35, 4, 869--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chang, W. and Zwicker, M. 2009. Range scan registration using reduced deformable models. Comput. Graph. Forum 28, 2, 447--456.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. ACM Trans. Graph. 30, 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3d mesh segmentation. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cos. 2012. The shape coseg dataset. http://web.siat.ac.cn/yunhai/ssl/ssd.htm.Google ScholarGoogle Scholar
  11. Fisher, M. and Hanrahan, P. 2010. Context-based search for 3d models. ACM Trans. Graph. 29, 182:1--182:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM Trans. Graph. 30, 34:1--34:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright orientation of man-made objects. ACM Trans. Graph. 27, 42:1--42:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Galleguillos, C. and Belongie, S. J. 2010. Context based object categorization: A critical survey. Comput. Vis. Image Understand. 114, 6, 712--722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Galleguillos, C., Rabinovich, A., and Belongie, S. 2008. Object categorization using co-occurrence, location and appearance. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  16. Giorgi, D., Biasotti, S., and Paraboschi, L. 2007. SHREC: Shape retrieval contest: Watertight models track. Tech. rep. http://www.cs.uu.nl/profi/public/SummerSchool/3DRetrieval/USCS07-3dpart6_shrec07.pdf.Google ScholarGoogle Scholar
  17. Golovinskiy, A. and Funkhouser, T. A. 2009. Consistent segmentation of 3d models. Comput. Graph. 33, 3, 262--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Harchaoui, Z. and Bach, F. 2007. Image classification with segmentation graphs. In IEEE Conference on Computer Vision and Pattern Recognition.Google ScholarGoogle Scholar
  19. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. ACM Trans. Graph. 30, 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Nonrigid registration under isometric deformations. In Proceedings of the Symposium on Geometry Processing (SGP'08). Eurographics Association, 1449--1457. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3d mesh segmentation and labeling. ACM Trans. Graph. 29, 4, 102:1--102:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Katz, S. and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Trans. Graph. 30, 79:1--79:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kyota, F., Watabe, T., Saito, S., and Nakajima, M. 2005. Detection and evaluation of grasping positions for autonomous agents. In Proceedings of the 4th International Conference on Cyberworlds. 453--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Laga, H. 2010. Semantics-driven approach for automatic selection of best views of 3d shapes. In Proceedings of the 3rd Eurographics Conference on 3D Object Retrieval (EG3DOR'10). Eurographics Association, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Laga, H. 2011. Data-driven approach for automatic orientation of 3d shapes. Vis. Comput. 27, 11, 977--989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Laga, H., Takahashi, H., and Nakajima, M. 2006. Spherical wavelet descriptors for content-based 3D model retrieval. In Proceedings of the IEEE International Conference on Shape Modeling and Applications. 15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. 2011. Globfit: Consistently fitting primitives by discovering global relations. ACM Trans. Graph. 30, 4, 52:1--52:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lipman, Y. and Funkhouser, T. 2009. Mobius voting for surface correspondence. ACM Trans. Graph. 28, 72:1--72:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Malisiewicz, T. and Efros, A. 2009. Beyond categories: The visual memex model for reasoning about object relationships. In Neural Information Processing Systems. http://repository.cmu.edu/cgi/viewcontent.cgi?article=1784&context=robotics.Google ScholarGoogle Scholar
  31. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25, 3, 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Mortara, M., Patane, G., and Spagnuolo, M. 2006. From geometric to semantic human body models. Comput. Graph. 30, 2, 185--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., and Rossignac, J. 2004. Plumber: A method for a multi-scale decomposition of 3d shapes into tubular primitives and bodies. In Proceedings of the 9th ACM Symposium on Solid Modeling and Applications. 339--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Oliva, A. and Torralba, A. 2007. The role of context in object recognition. Trends Cogn. Sci. 11, 520--527.Google ScholarGoogle ScholarCross RefCross Ref
  35. Osada, R., Funkhouser, T. A., Chazelle, B., and Dobkin, D. P. 2002. Shape distributions. ACM Trans. Graph. 21, 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3d shapes. ACM Trans. Graph. 30, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., and Belongie, S. 2007. Objects in context. In Proceedings of the 11th International Conference on Computer Vision (ICCV'07). 1--8.Google ScholarGoogle Scholar
  38. Sahbani, A. and El-Khoury, S. 2009. A hybrid approach for grasping 3d objects. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'09). IEEE Press, 1272--1277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., and Zhang, H. 2010. Contextual part analogies in 3d objects. Int. J. Comput. Vis. 89, 1--2, 309--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 249--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Shilane, P., Min, P., Kazhda, M., and Funkhouser, T. 2004. The princeton shape benchmark. In Proceedings of the International Conference on Shape Modeling and Applications. 167--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptorspace clustering. ACM Trans. Graph. 30, 6, 126:1--126:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Strat, T. M. and Fischler, M. A. 1991. Context-based vision: Recognizing objects using information from both 2d and 3d imagery. IEEE Trans. Pattern Anal. Mach. Intell. 13, 1050--1065. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., and Hamarneh, G. 2011. Prior knowledge for shape correspondence. Comput. Graph. Forum 30, 2, 553--562.Google ScholarGoogle ScholarCross RefCross Ref
  45. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2010. A survey on shape correspondence. Comput. Graph. Forum 30, 2, 553--562.Google ScholarGoogle ScholarCross RefCross Ref
  46. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z.-Q., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. Comput. Graph. Forum 30, 2, 287--296.Google ScholarGoogle ScholarCross RefCross Ref
  47. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., and Paragios, N. 2010. Dense non-rigid surface registration using high-order graph matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'10). 382--389.Google ScholarGoogle Scholar
  48. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., and Tagliasacchi, A. 2008. Deformation-driven shape correspondence. In Proceedings of the Symposium on Geometry Processing (SGP'08). Eurographics Association, 1431--1439. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zheng, Y., Cohen-Or, D., and Mitra, N. J. 2013. Smart variations: Functional substructures for part compatibility. Comput. Graph. Forum 32, 2, 133--263.Google ScholarGoogle ScholarCross RefCross Ref
  50. Zheng, Y., Fu, H., Cohen-Or, D., Au, O. K.-C., and Tai, C.-L. 2011. Component-wise controllers for structure-preserving shape manipulation. Comput. Graph. Forum 30, 2, 563--572.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Geometry and context for semantic correspondences and functionality recognition in man-made 3D shapes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 5
        September 2013
        142 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2516971
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 October 2013
        • Accepted: 1 April 2013
        • Revised: 1 March 2013
        • Received: 1 May 2012
        Published in tog Volume 32, Issue 5

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader