skip to main content
column

Moving heaven and earth: distances between distributions

Published:16 September 2013Publication History
Skip Abstract Section

Abstract

This column comes in two parts. In the first, I discuss various ways of defining distances between distributions. In the second, Jeff Erickson (chair of the SoCG steering committee) discusses some matters related to the relationship between ACM and the Symposium on Computational Geometry.

References

  1. S.-I. Amari and H. Nagaoka. Methods of information geometry. Oxford University Press., 2000.Google ScholarGoogle Scholar
  2. A. Andoni, P. Indyk, and R. Krauthgamer. Earth mover distance over highdimensional spaces. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, SODA '08, pages 343--352, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L. Baringhaus and C. Franz. On a new multivariate two-sample test. Journal of Multivariate Analysis, 88(1):190--206, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions are close. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 259--269. IEEE, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Bochner. Monotone funktionen, stieltjes integrale und harmonische analyse. Math. Annal., 108:378--410, 1933.Google ScholarGoogle ScholarCross RefCross Ref
  6. M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, STOC '02, pages 380--388, New York, NY, USA, 2002. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. R. Coifman and W. E. Leeb. Earth mover's distance and equivalent metrics for spaces with hierarchical partition trees. Technical Report YALEU/DCS/TR-1482, Yale University, 2013.Google ScholarGoogle Scholar
  8. H. Daumé. From zero to reproducing kernel hilbert spaces in twelve pages or less. http://pub.hal3.name/daume04rkhs.ps, 2004.Google ScholarGoogle Scholar
  9. H. Daumé. From zero to reproducing kernel hilbert spaces in twelve pages or less. http://pub.hal3.name/daume04rkhs.ps, 2004.Google ScholarGoogle Scholar
  10. A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics. International Statistical Review, 70(3):419--435, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Gretton, K. Borgwardt, M. J. Rasch, B. Scholkopf, and A. J. Smola. Akernel method for the two-sample problem. In NIPS, pages 513--520, 2007.Google ScholarGoogle Scholar
  12. P. Indyk. A near linear time constant factor approximation for euclidean bichromatic matching (cost). In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms, pages 39--42. Society for Industrial and Applied Mathematics, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Joshi, R. V. Kommaraji, J. M. Phillips, and S. Venkatasubramanian. Comparing distributions and shapes using the kernel distance. In Proceedings of the twenty-seventh annual symposium on Computational geometry, SoCG '11, pages 47--56, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. V. Kantorovich and G. Rubinstein. On a space of completely additive functions. Vestnik Leningrad. Univ, 13(7):52--59, 1958.Google ScholarGoogle Scholar
  15. S. Khot and A. Naor. Nonembeddability theorems via fourier analysis. In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages 101--110, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Martello. Jenö Egerváry: from the origins of the hungarian algorithm to satellite communication. Central European Journal of Operations Research, 18(1):47--58, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Monge. Mémoire sur la théorie des déblais et des remblais. In Histoire de l'Académie Royale des Sciences de Paris, avec lesMémoire de Mathématique et de Physique pour la même année, pages 666--704. Paris, 1781.Google ScholarGoogle Scholar
  18. A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, pages 429--443, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, pages 429--443, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. M. Phillips and S. Venkatasubramanian. A gentle introduction to the kernel distance. arXiv preprint arXiv:1103.1625, 2011.Google ScholarGoogle Scholar
  21. A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, NIPS. Curran Associates, Inc., 2007.Google ScholarGoogle Scholar
  22. Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99--121, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Rüschendorf. Wasserstein metric. In M. Hazewinkel, editor, Encyclopedia of Mathematics. Kluwer Academic Publishers, 1998.Google ScholarGoogle Scholar
  24. D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of distance-based and rkhs-based statistics in hypothesis testing. arXiv preprint arXiv:1207.6076, 2012.Google ScholarGoogle Scholar
  25. A. Sekular. On choices of color metrics. https://plus.google.com/112165457714968997350/posts/QE6RoyEiX4T.Google ScholarGoogle Scholar
  26. S. Shirdhonkar and D. Jacobs. Approximate earth mover's distance in linear time. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1--8, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  27. B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. R. Lanckriet. Hilbert space embeddings and metrics on probability measures. The Journal of Machine Learning Research, 99:1517--1561, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. G. J. Székely and M. L. Rizzo. Testing for equal distributions in high dimension. InterStat, 2004.Google ScholarGoogle Scholar
  29. G. J. Székely and M. L. Rizzo. A new test for multivariate normality. Journal of Multivariate Analysis, 93(1):58--80, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. G. J. Székely and M. L. Rizzo. Brownian distance covariance. The annals of applied statistics, pages 1236--1265, 2009.Google ScholarGoogle Scholar
  31. E. Verbin and Q. Zhang. Rademacher-sketch: a dimensionality-reducing embedding for sum-product norms, with an application to earth-mover distance. In Proc. 39th ICALP, pages 834--845. Springer-Verlag, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. V. M. Zolotarev. Probability metrics. Theory of Probability & Its Applications, 28(2):278--302, 1984.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM SIGACT News
    ACM SIGACT News  Volume 44, Issue 3
    September 2013
    85 pages
    ISSN:0163-5700
    DOI:10.1145/2527748
    Issue’s Table of Contents

    Copyright © 2013 Author

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 16 September 2013

    Check for updates

    Qualifiers

    • column

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader