skip to main content
research-article

On branching rules for convex mixed-integer nonlinear optimization

Published: 28 November 2013 Publication History

Abstract

Branch-and-Bound (B&B) is perhaps the most fundamental algorithm for the global solution of convex Mixed-Integer Nonlinear Programming (MINLP) problems. It is well-known that carrying out branching in a nonsimplistic manner can greatly enhance the practicality of B&B in the context of Mixed-Integer Linear Programming (MILP). No detailed study of branching has heretofore been carried out for MINLP. In this article, we study and identify useful sophisticated branching methods for MINLP, including novel approaches based on approximations of the nonlinear relaxations by linear and quadratic programs.

References

[1]
Abadie, J. and Carpentier, J. 1969. Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints. In Optimization. Academic Press, New York, 37--47.
[2]
Abhishek, K., Leyffer, S., and Linderoth, J. 2010. Filmint: An outer-approximation-based solver for nonlinear mixed integer programs. INFORMS J. Comput. 22, 555--567.
[3]
Achterberg, T., Koch, T., and Martin, A. 2005. Branching rules revisited. Oper. Res. Lett. 33, 1, 42--54.
[4]
Applegate, D., Bixby, R., Chvátal, V., and Cook, W. 1998. On the solution of traveling salesman problems. In Proceedings of the International Congress of Mathematicians, vol. III (Berlin, 1998). Doc. Math., 645--656.
[5]
Applegate, D., Bixby, R., Chvátal, V., and Cook, W. 2006. The Traveling Salesman Problems. Princeton University Press.
[6]
Beale, E. and Tomlin, J. 1970. Special facilities in a general mathematical programming system for nonconvex problems using ordered sets of variables. In Proceedings of the 5th International Conference on Operational Research. 447--454.
[7]
Beale, E. M. L. and Forrest, J. J. H. 1976. Global optimization using special ordered sets. Math. Program. 10, 52--69.
[8]
Benichou, M., Gauthier, J.-M., Girodet, P., Hentges, G., Ribière, G., and Vincent, O. 1971. Experiments in mixed-integer linear programming. Math. Program. 1, 1, 76--94.
[9]
Bonami, P., Biegler, L., Conn, A., Cornuéjols, G., Grossmann, I., Laird, C., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A. 2008. An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186--204.
[10]
Bonami, P., Forrest, J., Lee, J., and Wächter, A. 2007. Rapid development of an MINLP solver with COIN-OR. Optima 75, 1--5.
[11]
Bonami, P., Forrest, J. J. H., Laird, C., Lee, J., Margot, F., and Wächter, A. 2006. Bonmin: Basic Open-source Nonlinear Mixed INteger programming. http://www.coin-or.org/Bonmin.
[12]
Borchers, B. and Mitchell, J. 1994. An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 21, 359--367.
[13]
Bussieck, M. R., Drud, A. S., and Meeraus, A. 2003. MINLPLib—A collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15, 1.
[14]
Dakin, R. 1965. A tree search algorithm for mixed integer programming problems. Comput. J. 8, 250--255.
[15]
Dolan, E. and Moré, J. 2002. Benchmarking optimization software with performance profiles. Math. Program. 91, 201--213.
[16]
Duran, M. and Grossmann, I. 1986. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 3, 307--339.
[17]
Duran, M. and Grossmann, I. 1987. Erratum: “An outer-approximation algorithm for a class of mixed-integer nonlinear programs” {Math. Program. 36 (1986), no. 3, 307--339}. Math. Program. 39, 3, 337.
[18]
Fletcher, R. 1987. Practical Methods of Optimization 2nd Ed. John Wiley and Sons, New York.
[19]
Fletcher, R. 2000. Stable reduced hessian updates for indefinite quadratic programming. Math. Program. 87, 2, 251--264.
[20]
Fletcher, R. and Leyffer, S. 1998. User manual for filterSQP. Numerical analysis rep. NA-181, University of Dundee.
[21]
Forrest, J. 2005. Cbc: COIN-OR Branch-and-cut. https://projects.coin-or.org/Cbc.
[22]
Gabriele, G. and Ragsdell, K. 1976. OPT, A Nonlinear Programming Code in FORTRAN IV. The Modern Design Series, vol. I. Purdue Research Foundation.
[23]
Gauthier, J. M. and Ribire, G. 1977. Experiments in mixed-integer linear programming using pseudo-costs. Math. Program. 12, 26--47.
[24]
Glankwamdee, W. and Linderoth, J. 2006. Lookahead branching for mixed integer programming. Tech. rep. 06T-004, Industrial and Systems Engineering, Lehigh University.
[25]
Gupta, O. 1980. Branch and bound experiments in nonlinear integer programming. Ph.D. thesis, School of Industrial Engineering, Purdue University, West Lafayette, Indiana.
[26]
Gupta, O. and Ravindran, A. 1985. Branch and bound experiments in convex nonlinear integer programming. Management Sci. 31, 12, 1533--1546.
[27]
Land, A. and Doig, A. 1960. An automatic method for solving discrete programming problems. Econometrica 28, 497--520.
[28]
Lawler, E. and Wood, D. 1966. Branch-and-bound methods: a survey. Oper. Res. 14, 699--719.
[29]
Leyffer, S. 2001. Integrating SQP and branch-and-bound for mixed integer nonlinear programming. Comput. Optim. Appl. 18, 295--309.
[30]
Leyffer, S. 2003. MacMINLP: Test problems for mixed integer nonlinear programming. http://www.mcs.anl.gov/leyffer/macminlp.
[31]
Linderoth, J. and Kilincç, M. 2010. Personnal communication.
[32]
Linderoth, J. and Savelsbergh, M. 1999. A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11, 2, 173--187.
[33]
Little, J., Murty, K., Sweeney, D., and Karat, C. 1963. An algorithm for the traveling salesman problem. Oper. Res. 11, 972--989.
[34]
Lougee-Heimer, R. 2003. The common optimization interface for operations research. IBM J. Res. Devel. 47, 57--66. http://www.coin-or.org.
[35]
Mahajan, A., Leyffer, S., and Kirches, C. 2012. Solving mixed-integer nonlinear programs by qp-diving. Tech. rep. ANL/MCS-P2071-0312, Mathematics and Computer Science Division, Argonne National Laboratory. http://wiki.mcs.anl.gov/leyffer/images/b/b7/QP-diving.pdf.
[36]
Quesada, I. and Grossmann, I. 1992. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Engng. 16, 937--947.
[37]
Sawaya, N., Laird, C. D., Biegler, L. T., Bonami, P., Conn, A. R., Cornuéjols, G., Grossmann, I. E., Lee, J., Lodi, A., Margot, F., and Wächter, A. 2006. CMU-IBM open source MINLP project test set. http://egon.cheme.cmu.edu/ibm/page.htm.
[38]
Wolfe, P. 1967. Methods for linear constraints. In Nonlinear Programming, North-Holland, Amsterdam, 99--131.

Cited By

View all
  • (2023)Optimizing Privacy-Preserving Content-Centric NetworksICC 2023 - IEEE International Conference on Communications10.1109/ICC45041.2023.10279248(4360-4365)Online publication date: 28-May-2023
  • (2020)Minotaur: a mixed-integer nonlinear optimization toolkitMathematical Programming Computation10.1007/s12532-020-00196-1Online publication date: 7-Nov-2020
  • (2019)Risk-Aware Motion Planning and Control Using CVaR-Constrained OptimizationIEEE Robotics and Automation Letters10.1109/LRA.2019.29299804:4(3924-3931)Online publication date: Oct-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal of Experimental Algorithmics
ACM Journal of Experimental Algorithmics  Volume 18, Issue
2013
329 pages
ISSN:1084-6654
EISSN:1084-6654
DOI:10.1145/2444016
Issue’s Table of Contents
This paper is authored by an employee(s) of the United States Government and is in the public domain. Non-exclusive copying or redistribution is allowed, provided that the article citation is given and the authors and agency are clearly identified as its source.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 November 2013
Accepted: 01 September 2013
Revised: 01 June 2013
Received: 01 October 2012
Published in JEA Volume 18

Author Tags

  1. Mixed-integer nonlinear programming
  2. Strong-Branching
  3. branch-and-bound

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)2
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Optimizing Privacy-Preserving Content-Centric NetworksICC 2023 - IEEE International Conference on Communications10.1109/ICC45041.2023.10279248(4360-4365)Online publication date: 28-May-2023
  • (2020)Minotaur: a mixed-integer nonlinear optimization toolkitMathematical Programming Computation10.1007/s12532-020-00196-1Online publication date: 7-Nov-2020
  • (2019)Risk-Aware Motion Planning and Control Using CVaR-Constrained OptimizationIEEE Robotics and Automation Letters10.1109/LRA.2019.29299804:4(3924-3931)Online publication date: Oct-2019
  • (2018)Polyhedral approximation in mixed-integer convex optimizationMathematical Programming: Series A and B10.5555/3288898.3288934172:1-2(139-168)Online publication date: 1-Nov-2018
  • (2018)Integrality gap minimization heuristics for binary mixed integer nonlinear programmingJournal of Global Optimization10.1007/s10898-018-0623-471:3(593-612)Online publication date: 1-Jul-2018
  • (2017)Virtuous smoothing for global optimizationJournal of Global Optimization10.1007/s10898-017-0533-x69:3(677-697)Online publication date: 1-Nov-2017
  • (2017)Polyhedral approximation in mixed-integer convex optimizationMathematical Programming10.1007/s10107-017-1191-y172:1-2(139-168)Online publication date: 14-Sep-2017
  • (2016)Firefly penalty-based algorithm for bound constrained mixed-integer nonlinear programmingOptimization10.1080/02331934.2015.113592065:5(1085-1104)Online publication date: 27-Jan-2016
  • (undefined)Chance-Constrained Programming with Decision-Dependent UncertaintySSRN Electronic Journal10.2139/ssrn.3201121

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media