skip to main content
research-article

Multimedia search reranking: A literature survey

Published: 01 January 2014 Publication History

Abstract

The explosive growth and widespread accessibility of community-contributed media content on the Internet have led to a surge of research activity in multimedia search. Approaches that apply text search techniques for multimedia search have achieved limited success as they entirely ignore visual content as a ranking signal. Multimedia search reranking, which reorders visual documents based on multimodal cues to improve initial text-only searches, has received increasing attention in recent years. Such a problem is challenging because the initial search results often have a great deal of noise. Discovering knowledge or visual patterns from such a noisy ranked list to guide the reranking process is difficult. Numerous techniques have been developed for visual search re-ranking. The purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics, and benchmarking. We conclude with several promising directions for future research.

References

[1]
A. Amir, Janne Argillander, M. Campbell, A. Haubold, G. Iyengar, S. Ebadollahi, and F. Kang. 2005. IBM Research TRECVID-2005 video retrieval system. In Proceedings of the TRECVID Workshop.
[2]
R. Baeza-Yates and B. Ribeiro-Neto. 1999. Modern Information Retrieval. Addison Wesley.
[3]
N. Ben-Haim, B. Babenko, and S. Belongie. 2006. Improving web-based image search via content based clustering. In Proceedings of Computer Vision and Pattern Recognition Workshop on SLAM.
[4]
M. Bendersky and O. Kurland. 2008. Re-ranking search results using document-passage graphs. In Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval.
[5]
A. Benitez, M. Beigi, and S.-F. Chang. 1998. Using relevance feedback in content-based image metasearch. IEEE Internet Computing 2, 4 (1998), 59--69.
[6]
T. L. Berg and D. A. Forsyth. 2006. Animals on the web. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1463--1470.
[7]
Bing. 2013. Homepage. Retrieved from http://www.bing.com/.
[8]
T. Bogers and A. Bosch. 2009. Authoritative ReRanking in fusing authorship-based subcollection search results. In Proceedings of Dutch-Belgian Information Retrieval Workshop. 49--55.
[9]
S. Boll. 2007. MultiTube—where multimedia and Web 2.0 could meet. IEEE Multimedia 14, 1 (Jan.-March 2007), 9--13.
[10]
S. Brin and L. Page. 1998a. The anatomy of a large-scale hyper textual Web search engine. Computer Networks and ISDN Systems 30, 1--7 (1998), 107--117.
[11]
S. Brin and L. Page. 1998b. The anatomy of a large-scale hypertextual Web search engine. In Proceedings of the International Conference on World Wide Web.
[12]
M. Brinkmeier. 2006. The anatomy of a large-scale hypertextual Web search engine. In Proceedings of the International Conference on World Wide Web. 282--301.
[13]
D. Cai, X. He, Z. Li, W.-Y. Ma, and J.-R. Wen. 2004. Hierarchical clustering of WWW image search results using visual, textual and link information. In Proceedings of ACM Multimedia. 952--959.
[14]
J. Cao, Y. D. Zhang, Y. C. Song, Z. N. Chen, X. Zhang, and J. T. Li. 2009. MCG-WEBV: A benchmark dataset for web video analysis. Technical Report ICT-MCG-09-001. Beijing, China.
[15]
Yang Cao, Changhu Wang, Liqing Zhang, and Lei Zhang. 2011. Edgel index for large-scale sketch-based image search. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 761--768.
[16]
Yang Cao, Hai Wang, Changhu Wang, Zhiwei Li, Liqing Zhang, and Lei Zhang. 2010. MindFinder: Interactive sketch-based image search on millions of images. In Proceedings of ACM Multimedia.
[17]
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. 2007. Learning to rank: From pair-wise approach to list-wise approach. In Proceedings of International Conference on Machine Learning. 129--136.
[18]
J. Carbonell. 1997. Translingual information retrieval: A comparative evaluation. In Proceedings of International Joint Conference on Artificial Intelligence.
[19]
J. Carbonell and J. Goldstein. 1998. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval.
[20]
S.-F. Chang, W. Hsu, W. Jiang, L. Kennedy, D. Xu, A. Yanagawa, and E. Zavesky. 2006. Columbia University TRECVID-2006 video search and high-level feature extraction. In TREC Video Retrieval Evaluation Online Proceedings.
[21]
S.-F. Chang, W.-Y. Ma, and A. Smeulders. 2007. Recent advances and challenges of semantic image/video search. In Proceedings of the IEEE International Conferenc on Acoustics Speech and Signal Processing (ICASSP’07).
[22]
S. Chen, F. Wang, Y. Song, and C. Zhang. 2011. Semi-supervised ranking aggregation. Information Processing & Management 47, 3 (May 2011), 415--425.
[23]
T.-S. Chua, S.-Y. Neo, K.-Y. Li, G. Wang, R. Shi, M. Zhao, and H. Xu. 2004. TRECVID 2004 search and feature extraction task by NUS PRIS. In TREC Video Retrieval Evaluation Online Proceedings.
[24]
Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-Tao Zheng. 2009. NUS-WIDE: A real-world Web image database from National University of Singapore. In Proceedings of the ACM International Conference on Image and Video Retrieval.
[25]
Ondrej Chum, Andrej Mikulik, Michal Perdoch, and Jiri Matas. 2011. Total Recall II: Query expansion revisited. In Proceedings of CVPR.
[26]
Ondrej Chum, James Philbin, Josef Sivic, Michael Isard, and Andrew Zisserman. 2007. Total Recall: Automatic query expansion with a generative feature model for object retrieval. In Proceedings of ICCV.
[27]
W. B. Croft. 2000. Combining approaches to information retrieval. In Advanced in Information Retrieval. 1--36.
[28]
J. Cui, F. Wen, and X. Tang. 2008a. IntentSearch: Interactive on-line image search re-ranking. In Proceedings of ACM Multimedia. 997--998.
[29]
J. Cui, F. Wen, and X. Tang. 2008b. Real time Google and live image search re-ranking. In Proceedings of ACM Multimedia. 729--732.
[30]
R. Datta, D. Joshi, J. Li, and J. Z. Wang. 2008. Image retrieval: Ideas, influences, and trends of the new age. Comput. Surveys 40, 65 (2008).
[31]
H. Deng, M. R. Lyu, and I. King. 2009b. Effective latent space graph-based re-ranking model with global consistency. In Proceedings of the 2nd ACM International Conference on Web Search and Data Mining.
[32]
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009a. A large-scale hierarchical image database. In Proceedings of IEEE CVPR.
[33]
H. Ding, J. Liu, and H. Lu. 2008. Hierarchical clustering-based navigation of image search results. In Proceedings of ACM Multimedia. 741--744.
[34]
K. M. Donald and A. F. Smeaton. 2005. A comparison of score, rank and probability-based fusion methods for video shot retrieval. In Proceedings of ACM International Conference on Image and Video Retrieval.
[35]
C. Dwork, S. R. Kumar, M. Naor, and D. Sivakumar. 2001. Rank aggregation methods for the Web. In Proceedings of the International World Wide Web Conference. 613--622.
[36]
S. Ebadollahi, D. Joshi, M. Naphade, A. Natsev, J. Seidl, J. R. Smith, K. Scheinberg, J. Tesic, and L. Xie. 2006. IBM Research TRECVID-2006 video retrieval system. In TREC Video Retrieval Evaluation Online Proceedings.
[37]
M. Eitz, K. Hildebrand, T. Boubekeur, and M. Alexa. 2011. Sketch-Based Image Retrieval: Benchmark and Bag-of-Features Descriptors. IEEE Trans. on Visualization and Computer Graphics 17, 11 (Nov. 2011), 1624--1636.
[38]
M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. 2010. The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision 88, 2 (2010), 303--338.
[39]
Facebook. 2013. Homepage. Retreived from http://www.facebook.com/.
[40]
R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. 2005. Learning object categories from Google’s image search. In Proceedings of International Conference on Computer Vision. 1816--1823.
[41]
R. Fergus, P. Perona, and A. Zisserman. 2004. A visual category filter for Google images. In Proceedings of the European Conference on Computer Vision.
[42]
Flickr. 2013. Homepage. Retrieved from http://www.flickr.com/.
[43]
J. Fogarty, A. Kapoor, D. Tan, and S. Winder. 2007. CueFlik: Interactive concept learning in image search. In Proceeding of the SIGCHI Conference on Human Factors in Computing Systems. 29--38.
[44]
Bo Geng, Linjun Yang, Chao Xu, Xian-Sheng Hua, and Shipeng Li. 2011. The role of attractiveness in web image search. In Proceedings of ACM Multimedia. 63--72.
[45]
Google. 2013. Homepage. Retrieved from http://www.google.com/.
[46]
A. Haubold, A. Natsev, and M. R. Naphade. 2006. Semantic multimedia retrieval using lexical query expansion and model-based reranking. In Proceedings of the IEEE International Conference on Multimedia & Expo.
[47]
A. Hauptmann, M.-Y. Chen, M. Christel, C. Huang, W.-H. Lin, T. Ng, N. Papernick, A. Velivelli, J. Yang, R. Yan, H. Yang, and H. D. Wactlar. 2004. Confounded expectations: Informedia at TRECVID 2004. In TREC Video Retrieval Evaluation Online Proceedings.
[48]
A. G. Hauptmann, M. Christel, and R. Yan. 2008a. Video retrieval based on semantic concepts. In Proceedings of the IEEE. 602--622.
[49]
A. G. Hauptmann and M. G. Christel. 2004. Successful approaches in the TREC video retrieval evaluations. In Proceedings of ACM Multimedia. 668--675.
[50]
A. G. Hauptmann, M. G. Christel, and R. Yan. 2008b. Video retrieval based on semantic concepts. Proc. IEEE 96, 4 (April 2008), 602--622.
[51]
A. G. Hauptmann, W. H. Lin, R. Yan, J. Yang, and M. Y. Chen. 2006. Extreme video retrieval: Joint maximization of human and computer performance. In Proceedings of the ACM International Conference on Multimedia.
[52]
A. G. Hauptmann, R. Yan, W.-H. Lin, M. Christel, and H. Wactlar. 2007. Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news. IEEE Transaction on Multimedia 9, 5 (2007), 958--966.
[53]
T. H. Haveliwala. 2002. Topic-sensitive PageRank. In Proceedings of the International Conference on World Wide Web.
[54]
Jingrui He, Changshui Zhang, Nanyuan Zhao, and Hanghang Tong. 2005. Boosting web image search by co-ranking. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 409--412.
[55]
R. Herbrich, T. Graepel, and K. Obermayer. 2000. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers (2000), 115--132.
[56]
S. C. Hoi and M. R. Lyu. 2007. A multimodal and multilevel ranking framework for content-based video retrieval. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 1520--6149.
[57]
R. Hong, G. Li, L. Nie, J. Tang, and T.-S. Chua. 2010. Exploring large scale data for multimedia QA: An initial study. In Proceedings of ACM International Conference on Image and Video Retrieval. 74--81.
[58]
W. Hsu and S.-F. Chang. 2007. Video search reranking through random walk over document-level context graph. In Proceedings of ACM Multimedia. 971--980.
[59]
W. Hsu, L. Kennedy, and S.-F. Chang. 2007. Reranking methods for visual search. IEEE Multimedia 14, 3 (July-Sept. 2007), 14--22.
[60]
W. H. Hsu, L. S. Kennedy, and S.-F. Chang. 2006. Video search reranking via information bottleneck principle. In Proceedings of the ACM International Conference on Multimedia.
[61]
Y. Hu, N. Yu, Z. Li, and M. Li. 2007. Image search result clustering and re-ranking via partial grouping. In Proceedings of the IEEE International Conference on Multimedia & Expo. 603--606.
[62]
Gang Hua and Qi Tian. 2009. What can visual content analysis do for text based image search? In Proceedings of the IEEE International Conference on Multimedia & Expo. 1480--1483.
[63]
M. J. Huiskes and M. S. Lew. 2008. The MIR Flickr retrieval evaluation. In Proceedings of the ACM International Conference on Multimedia Information Retrieval.
[64]
M. J. Huiskes, B. Thomee, and M. S. Lew. 2010. New trends and ideas in visual concept detection: The MIR Flickr retrieval evaluation initiative. In Proceedings of ACM International Conference on Multimedia Information Retrieval.
[65]
ImageCLEF. 2013. ImageCLEF—The CLEack. Retrieved from http://www.imageclef.org/.
[66]
ImageNet. 2013. ImageNet. Retrieved from http://www.image-net.org/.
[67]
V. Jain and M. Varma. 2011. Learning to re-rank: Query-dependent image re-ranking using click data. In Proceedings of International World Wide Web Conference.
[68]
K. Jarvelin and J. Kekalainen. 2000. IR evaluation methods for retrieving highly relevant documents. In Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval.
[69]
Kalervo Jarvelin and Jaana Kekalainen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422--446.
[70]
Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Improving bag-of-features for large scale image search. International Journal of Computer Vision 87, 3 (May 2010), 316--336.
[71]
F. Jing, C. Wang, Y. Yao, K. Deng, L. Zhang, and W.-Y. Ma. 2006. IGroup: Web image search results clustering. In Proceedings of ACM Multimedia. 377--384.
[72]
Y. Jing and S. Baluja. 2008a. PageRank for product image search. In Proceedings of the International World Wide Web Conference. 307--315.
[73]
Yushi Jing and Shumeet Baluja. 2008b. VisualRank: Applying PageRank to large-scale image search. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 11 (Nov. 2008), 1877--1890.
[74]
L. Kennedy and S.-F Chang. 2007. A reranking approach for context-based concept fusion in video indexing and retrieval. In Proceedings of the ACM International Conference on Image and Video Retrieval.
[75]
L. Kennedy, S.-F. Chang, and A. Natsev. 2008a. Query-adaptive fusion for multimodal search. Proceedings of IEEE 96, 4 (2008), 567--588.
[76]
L. Kennedy, S.-F. Chang, and A. Natsev. 2008b. Query-adaptive fusion for multimodal search. Proc. IEEE 96, 4 (April 2008), 567--588.
[77]
L. Kennedy and M. Naaman. 2008. Generating diverse and representative image search results for landmarks. In Proceedings of the International World Wide Web Conference. 297--306.
[78]
L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. 2007. How Flickr helps us make sense of the world: Context and content in community-contributed media collections. In Proceedings of ACM Multimedia.
[79]
J. Koren, Y. Zhang, and X. Liu. 2008. Personalized interactive faceted search. In Proceedings of WWW.
[80]
Josip Krapac, Moray Allan, Jakob Verbeek, and Frdric Jurie. 2010. Improving web-image search results using query-relative classifiers. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1094--1101.
[81]
Oren Kurland and Lillian Lee. 2005. PageRank without hyperlinks: Structural re-ranking using links induced by language models. In Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval. 306--313.
[82]
K.-S. Lee, Y.-C. Park, and K.-S. Choi. 2001. Re-ranking model based on document clusters. Information Processing & Management 37, 1 (Jan. 2001), 1--14.
[83]
M. S. Lew. 2000. Next-generation web searches for visual content. IEEE Computer Society 3, 11 (2000), 46--53.
[84]
M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. 2006. Content-based multimedia information retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing, Communications and Applications 2, 1 (February 2006), 1--19.
[85]
H. Li, M. Wang, and X.-S. Hua. 2009. MSRA-MM 2.0: A large-scale web multimedia dataset. In Proceedings of the ICDM Workshop on Internet Multimedia Mining.
[86]
Jia Li, Shih-Fu Chang, Michael Lesk, Rainer Lienhart, Jiebo Luo, and Arnold W. M. Smeulders. 2007. New challenges in multimedia research for the increasingly connected and fast growing digital society. In Proceedings of the ACM SIGMM International Workshop on Multimedia Information Retrieval. 3--10.
[87]
L. J. Li, H. Su, Y. Lim, and L. Fei-Fei. 2010b. Objects as attributes for scene classification. In Proceedings of the European Conference of Computer Vision, International Workshop on Parts and Attributes.
[88]
L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. 2010c. Object bank: A high-level image representation for scene classification and semantic feature sparsification. In Proceedings of the Neural Information Processing Systems.
[89]
X. Li, C. G. M. Snoek, and M. Worring. 2010a. Unsupervised multi-feature tag relevance learning for social image retrieval. In Proceedings of the ACM International Conference on Image and Video Retrieval. 10--17.
[90]
X. Li, D. Wang, J. Li, and B. Zhang. 2007. Video search in concept subspace: A text-like paradigm. In Proceedings of ACM International Conference on Image and Video Retrieval. 603--610.
[91]
J. Lin. 2008. PageRank without Hyperlinks: Reranking with related document networks. In Technical Report LAMP-TR-146.
[92]
Jingjing Liu, Wei Lai, Xian-Sheng Hua, Yalou Huang, and Shipeng Li. 2007a. Video search re-ranking via multi-graph propagation. In Proceedings of ACM Multimedia. 208--217.
[93]
Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval 3, 3 (2009), 225--331.
[94]
X. Liu, Z. Li, Z. Shi, and Z. Shi. 2009a. Filter object categories: Employing visual consistency and semi-supervised approach. In IEEE International Conference on Multimedia & Expo. 678--681.
[95]
Y. Liu and T. Mei. 2011. Optimizing visual search reranking via pairwise learning. IEEE Trans. on Multimedia 13, 2 (April 2011), 280--291.
[96]
Yuan Liu, Tao Mei, and Xian-Sheng Hua. 2009b. CrowdReranking: Exploring multiple search engines for visual search reranking. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval. 500--507.
[97]
Y. Liu, T. Mei, X.-S. Hua, J. Tang, X. Wu, and S. Li. 2008a. Learning to video search rerank via pseudo preference feedback. In Proceedings of the IEEE International Conference on Multimedia & Expo.
[98]
Y. Liu, T. Mei, M. Wang, X. Wu, and X.-S. Hua. 2010. Typicality-based image search reranking. IEEE Trans. on Circuits System and Video Technology 20, 5 (May 2010), 749--755.
[99]
Y. Liu, T. Mei, X. Wu, and X.-S. Hua. 2008b. An optimization-based framework for video search re-ranking. In Proceedings of the ACM SIGMM Workshop on Multimedia Information Retrieval.
[100]
Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li. 2007b. Supervised Rank Aggregation. In Proceedings of the International World Wide Web Conference. 481--489.
[101]
D. G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 2 (2004), 91--110.
[102]
Wenhao Lu, Jingdong Wang, Xian-Sheng Hua, Shengjin Wang, and Shipeng Li. 2011. Robust visual reranking via sparsity and ranking constraints. In Proceedings of ACM Multimedia. 513--522.
[103]
T. Mei, X.-S. Hua, W. Lai, L. Yang, and et al. 2007. MSRA-USTC-SJTU at TRECVID 2007: High-level feature extraction and search. In TREC Video Retrieval Evaluation Online Proceedings.
[104]
T. Mei and Y. Rui. 2009. Image similarity. In Ling Liu and M. Tamer Ozsu (Eds.), Encyclopedia of Database Systems, Springer. 1379--1384 pages.
[105]
Nobuyuki Morioka and Jingdong Wang. 2011. Robust visual reranking via sparsity and ranking constraints. In Proceedings of ACM Multimedia. 533--542.
[106]
D. Myoupo, A. Popescu, H. L. Borgne, and P.-A. Moellic. 2009. Visual reranking for image retrieval over the Wikipedia corpus. In CLEF.
[107]
S.-H. Na, I.-S. Kang, and J.-H. Lee. 2008. Structural re-ranking with cluster-based retrieval. In Advanced in Information Retrieval. 658--662.
[108]
M. Naphade, J. R. Smith, J. Tesic, S.-F. Chang, W. Hsu, L. Kennedy, A. Hauptmann, and J. Curtis. 2006. Large-scale concept ontology for multimedia. IEEE MultiMedia 13, 3 (2006), 86--91.
[109]
A. Natsev, A. Haubold, J. Tesic, Lexing Xie, and R. Yan. 2007. Semantic concept-based query expansion and re-ranking for multimedia retrieval. In Proceedings of ACM Multimedia. 991--1000.
[110]
C. W. Ngo. 2009. VIREO/DVMM at TRECVID 2009: High-level feature extraction, automatic video search, and content-Based copy detection. In TREC Video Retrieval Evaluation Online Proceedings.
[111]
C.-W. Ngo, S. A. Zhu, W. Zhang, C.-C. Tan, T. Yao, L. Pang, and H.-K. Tan. 2011. VIREOTRECVID 2011: Instance search, semantic indexing, multimedia event detection and known-item search. In TREC Video Retrieval Evaluation Online Proceedings.
[112]
D. Nister and H. Stewenius. 2006. Scalable recognition with a vocabulary tree. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2161--2168.
[113]
NUS-WIDE. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.
[114]
X. Olivares, M. Ciaramita, and R. Zwol. 2008. Boosting image retrieval through aggregating search results based on visual annotations. In Proceedings of ACM Multimedia. 189--198.
[115]
G. Park, Y. Baek, and H.-K. Lee. 2005. Re-ranking algorithm using post-retrieval clustering for content-based image retrieval. Information Processing & Management 41, 2 (March 2005), 177--194.
[116]
PASCAL. http://pascallin.ecs.soton.ac.uk/challenges/VOC/.
[117]
James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. 2007. Object retrieval with large vocabularies and fast spatial matching. In Proceedings of CVPR.
[118]
A. Popescu, P.-A. Moellic, I. Kanellos, and R. Landais. 2009. Lightweight web image reranking. In Proceedings of ACM Multimedia. 657--660.
[119]
M. Elena Renda and U. Straccia. 2003. Web metasearch: Rank vs. score based rank aggregation methods. In Proceedings of the ACM Symposium on Applied Computing. 841--846.
[120]
U. Rohini and V. Varma. 2007. A novel approach for re-ranking of search results using collaborative filtering. In Proceedings of the International Conference on Computing: Theory and Applications.
[121]
D. E. Rose and D. Levinson. 2004. Understanding user goals in web search. In Proceedingos of WWW. 13--19.
[122]
S. Rudinac, M. Larson, and A. Hanjalic. 2009. Exploiting visual reranking to improve pseudo-relevance feedback for spoken-content-based video retrieval. In Proceedings of the International Workshop on Image Analysis for Multimedia Interactive Services. 17--20.
[123]
Y. Rui, T. S. Huang, and S.-F. Chang. 1999. Image retrieval: Current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation 13, 10 (1999), 39--62.
[124]
Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. 1998. Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Trans. on Circuits and Video Technology 8, 5 (September 1998), 644--655.
[125]
R. Yan and A. G. Hauptmann. 2003. The combination limit of video retrieval. In Proceedings of ACM Multimedia. 339--342.
[126]
G. Salton, A. Wong, and C. S. Yang. 1975. A vector space model for automatic indexing. Commun. ACM 18, 11 (1975), 611--620.
[127]
SavvySearch. 2013. Search.com. Retrieved from http://www.search.com/images.
[128]
J. Sivic and A. Zisserman. 2003. Video Google: A tex retrieval approach to object matching in videos. In Proceedings of ICCV.
[129]
Alan F. Smeaton, Paul Over, Cash J. Costello, Arjen P. De Vries, David Doermann, Alexander Hauptmann, Er Hauptmann, Mark E. Rorvig, John R. Smith, and Lide Wu. 2002. The TREC2001 video track: Information retrieval on digital video information. In Proceedings of the European Conference on Research and Advanced Technology for Digital Libraries.
[130]
A. F. Smeaton, P. Over, and W. Kraaij. 2006. Evaluation campaigns and TRECVid. In Proceedings of the ACM Workshop on Multimedia Information Retrieval.
[131]
A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. 2000. Content-based image retrieval at the end of the early years. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 12 (2000), 1349--1380.
[132]
J. R. Smith, A. Jaimes, C.-Y. Lin, M. Naphade, A. P. Natsev, and B. Tseng. 2003. Interactive search fusion methods for video database retrieval. In Proceedings of the IEEE International Conference on Image Processing.
[133]
C. G. M. Snoek, J. C. van Gemert, Th. Gevers, B. Huurnink, D. C. Koelma, M. Van Liempt, O. De Rooij, K. E. A. van de Sande, F. J. Seinstra, A. W. M. Smeulders, A. H. C. Thean, C. J. Veenman, and M. Worring. 2006. The MediaMill TRECVID 2006 Semantic Video Search Engine. In TREC Video Retrieval Evaluation Online Proceedings.
[134]
Cees G. M. Snoek and Marcel Worring. 2009. Concept-based video retrieval. Foundations and Trends in Information Retrieval 4, 2 (2009), 215--322.
[135]
Cees G. M. Snoek, Marcel Worring, Ork de Rooij, Koen E. A. van de Sande, Rong Yan, and Alexander G. Hauptmann. 2008. VideOlympics: Real-time evaluation of multimedia retrieval systems. IEEE MultiMedia 15, 1 (2008), 86--91.
[136]
C. G. M. Snoek, M. Worring, and A. W. M. Smeulders. 2005. Early versus late fusion in semantic video analysis. In Proceedings of ACM Multimedia. Singapore, 399--402.
[137]
Cees G. M. Snoek, M. Worring, Jan C. van Gemert, J. M. Geusebroek, and Arnold W. M. Smeulders. 2006. The challenge problem for automated detection of 101 semantic concepts in multimedia. In Proceedings of the ACM International Conference on Multimedia.
[138]
K. Song, Y. Tian, W. Gao, and T. Huang. 2006. Diversifying the image retrieval results. In Proceedings of ACM Multimedia. 707--710.
[139]
D. Sontag, K. Collins-Thompson, P. N. Bennett, R. W. White, S. Dumais, and B. Billerbeck. 2012. Probabilistis models for personalizing web search. In Proceedings of the ACM International Conference on Web Search and Data Mining.
[140]
J. Tang, X.-S. Hua, G.-J. Qi, and X. Wu. 2007. Typicality ranking via semi-supervised multiple-instance learning. In Proceedings of ACM Multimedia. 297--300.
[141]
J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. 2007. Information re-retrieval: Repeat queries in Yahoo¡¯s logs. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval. 151--158.
[142]
Xinmei Tian, Dacheng Tao, Xian-Sheng Hua, and Xiuqing Wu. 2010. Active reranking for web image search. IEEE Transactions on Image Processing 19, 3 (March 2010), 805--820.
[143]
X. Tian, L. Yang, J. Wang, Y. Yang, X. Wu, and X.-S. Hua. 2008. Bayesian video search reranking. In Proceedings of ACM Multimedia. 131--140.
[144]
A. Torralba. 2008. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 11 (2008), 1958--1970.
[145]
TRECVID. 2013. TREC Video Retrieval Evaluation: TRECVID. Retrieved from http://www-nlpir.nist.gov/projects/trecvid/.
[146]
Michele Trevisiol, Luca Chiarandini, Luca Maria Aiello, and Alejandro Jaimes. 2012. Image ranking based on user browsing behavior. In Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval. 445--454.
[147]
Y.-H. Tseng, C.-Y. Tsai, and Z.-J. Chuang. 2008. On the robustness of document re-ranking technique, a comparison of label propagation, KNN, and relevance feedback. In Proceedings of NTCIR-6 Workshop Meeting.
[148]
Panu Turcot and David G. Lowe. 2009. Better matching with fewer features: The selection of useful features in large database recognition problems. In Proceedings of ICCV Workshop on Emergent Issues in Large Amounts of Visual Data.
[149]
VIDEOSURF. (2010). http://www.videosurf.com/.
[150]
G. Wang and D. Forsyth. 2008. Object image retrieval by exploiting online knowledge resources. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
[151]
J. Wang and X.-S. Hua. 2011. Interactive image search by color map. ACM Transactions on Intelligent Systems and Technology 3, 1 (2011).
[152]
L. Wang, L. Yang, and X. Tian. 2009b. Query aware visual similarity propagation for image search reranking. In Proceedings of ACM Multimedia. 725--728.
[153]
M. Wang, H. Li, D. Tao, and K. Lu. 2012. Multimodal graph-based reranking for web image search. IEEE Transactions on Image Processing 21, 11 (Nov. 2012), 4649--4661.
[154]
M. Wang, K. Yang, X.-S. Hua, and H.-J. Zhang. 2010a. Towards a relevant and diverse search of social images. IEEE Transactions on Multimedia 12, 8 (Dec. 2010), 829--842.
[155]
M. Wang, L. Yang, and X.-S. Hua. 2009a. MSRA-MM: Bridging research and industrial societies for multimedia information retrieval. Microsoft Technical Report.
[156]
S. Wang, F. Jing, J. He, Q. Du, and L. Zhang. 2007. IGroup: Presenting web image search results in semantic clusters. In Proceeding of the SIGCHI Conference on Human Factors in Computing Systems. 587--596.
[157]
X. Wang, Z. Li, and D. Tao. 2011. Subspaces indexing model on Grassmann manifold for image search. IEEE Trans. on Image Processing 20, 9 (Sept. 2011), 2627--2635.
[158]
Xin-Jing Wang, Lei Zhang, Ming Liu, Yi Li, and Wei-Ying Ma. 2010b. ARISTA--image search to annotation on billions of web photos. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 2987--2994.
[159]
Yang Wang, Tao Mei, Jingdong Wang, Houqiang Li, and Shipeng Li. 2011. JIGSAW: Interactive mobile visual search with multimodal queries. In Proceedings of ACM Multimedia. 73--82.
[160]
S. Wei, Y. Zhao, Z. Zhu, and N. Liu. 2009. Multimodal fusion for video search Reranking. IEEE Trans. on Knowledge and Data Engineering (June 2009).
[161]
Ryen W. White, Matthew Richardson, Mikhail Bilenko, and Allison P. Heath. 2008. Enhancing web search by promoting multiple search engine use. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval. 43--50.
[162]
Wikipedia. 2013. Click-Through Rate. Retrieved from http://en.wikipedia.org/wiki/Click-through_rate.
[163]
P. Wilkins, P. Ferguson, and A. F. Smeaton. 2006. Using score distribution for query-time fusion in multimedia retrieval. In Proceedings of the ACM Workshop on Multimedia Information Retrieval. 51--60.
[164]
P. Wilkins, A. F. Smeaton, and P. Ferguson. 2010. Properties of optimally weighted data fusion in CBMIR. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval. 643--650.
[165]
K. Wnuk and S. Soattoh. 2008. Filtering internet image search results towards keyword based category recognition. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.
[166]
M. Worring, C. G. M. Snoek, O. de Rooij, G. P. Nguyen, and A. W. M. Smeulders. 2007. Recent advances and challenges of semantic image/video search. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 1213--1216.
[167]
X. Wu, A. G. Hauptmann, and C.-W. Ngo. 2007. Novelty detection for cross-lingual news stories with visual duplicates and speech transcripts. In Proceedings of ACM Multimedia. 168--177.
[168]
Hao Xu, Jingdong Wang, Xian-Sheng Hua, and Shipeng Li. 2010. Image search by concept map. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval. 275--282.
[169]
Yahoo! 2013. Homepage. Retrieved from http://www.yahoo.com/.
[170]
T. Yamamoto, S. Nakamura, and K. Tanaka. 2007. Rerank-by-example: Efficient browsing of web search results. Database and Expert Systems Applications (2007), 801--810.
[171]
R. Yan and A. G. Hauptmann. 2004. Co-retrieval: A boosted reranking approach for video retrieval. In Proceedings of the ACM International Conference on Image and Video Retrieval.
[172]
R. Yan and A. G. Hauptmann. 2006. Probabilistic latent query analysis for combining multiple retrieval sources. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval. 324--331.
[173]
R. Yan and A. G. Hauptmann. 2007a. Query expansion using probabilistic local feedback with application to multimedia Retrieval. In Proceedings of the ACM Conference on Information and Knowledge Management. 361--370.
[174]
R. Yan and A. G. Hauptmann. 2007b. A review of text and image retrieval approaches for broadcast news video. Information Retrieval 10, 4--5 (October 2007), 445--484.
[175]
R. Yan, A. G. Hauptmann, and R. Jin. 2003. Multimedia search with pseudo-relevance feedback. In Proceedings of the ACM International Conference on Image and Video Retrieval.
[176]
R. Yan, J. Yang, and A. Hauptmann. 2004. Learning query-class dependent weights in automatic video retrieval. In Proceedings of ACM Multimedia. 548--555.
[177]
A. Yanagawa, S. F. Chang, L. Kennedy, and W. Hsu. 2007. Columbia University’s baseline detectors for 374 LSCOM semantic visual concepts. Columbia University ADVENT Technical Report.
[178]
K. Yang, M. Wang, X.-S. Hua, and H.-J. Zhang. 2010. Social image search with diverse relevance ranking. In Proceedings of the International MultiMedia Modeling Conference. 174--184.
[179]
Y. Yang, F. Nie, D. Xu, J. Luo, Y. Zhuang, and Y. Pan. 2012. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Trans. on Pattern Analysis and Machine Intelligence 34, 4 (April 2012), 723--742.
[180]
YouTube. 2013. Homepage. Retrieved from http://www.youtube.com/.
[181]
Eric Zavesky and Shih-Fu Chang. 2008. CuZero: Embracing the frontier of interactive visual search for informed users. In Proceedings of ACM Multimedia Information Retrieval. 237--244.
[182]
Zheng-Jun Zha, Linjun Yang, Tao Mei, Meng Wang, and Zengfu Wang. 2009. Visual query suggestion. In Proceedings of ACM Multimedia. 15--24.
[183]
Zheng-Jun Zha, Linjun Yang, Tao Mei, Meng Wang, Zengfu Wang, Tat-Seng Chua, and Xian-Sheng Hua. 2010. Visual query suggestion: Towards capturing user intent in internet image search. ACM Transactions on Multimedia Computing, Communications, and Applications 6, 3 (2010).
[184]
Wengang Zhou, Yijuan Lu, Houqiang Li, Yibing Song, and Qi Tian. 2010. Spatial coding for large scale partial-duplicate web image search. In Proceedings of ACM Multimedia. 511--520.
[185]
X. S. Zhou and T. S. Huang. 2002. Relevance feedback in content-based image retrieval: Some recent advances. Information Sciences 148, 1--4 (Dec. 2002), 129--137.
[186]
X. S. Zhou and T. S. Huang. 2003. Relevance feedback for image retrieval: A comprehensive review. Multimedia Systems 8, 6 (April 2003), 536--544.
[187]
G. Zhu, S. Yan, and Y. Ma. 2010. Image tag refinement towards low-rank, content-tag prior and error sparsity. In Proceedings of the ACM International Conference on Multimedia. 461--470.
[188]
Jinfeng Zhuang, Tao Mei, Steven C. H. Hoi, Xian-Sheng Hua, and Shipeng Li. 2011a. Modeling social strength in social media community via kernel-based learning. In Proceedings of ACM Multimedia. 113--122.
[189]
Jinfeng Zhuang, Tao Mei, Steven C. H. Hoi, Ying-Qing Xu, and Shipeng Li. 2011b. When recommendation meets mobile: contextual and personalized recommendation on the go. In Proceedings of the ACM International Conference on Ubiquitous Computing. 153--162.
[190]
Z. Zhuang and S. Cucerzan. 2006. Re-ranking search results using query logs. In Proceedings of the ACM Conference on Information and Knowledge Management. 860--861.
[191]
H. Zitouni, S. Sevil, D. Ozkan, and P. Duygulu. 2008. Re-ranking of web image search results using a graph algorithm. In Proceedings of the International Conference on Pattern Recognition. 1--4.
[192]
M. M. Zloof. 1975a. Query by example. In Proceedings of the AFIPS National Compute Conference. 431--438.
[193]
Moshe M. Zloof. 1975b. Query-by-example: The invocation and definition of tables and forms. In Proceedings of VLDB. 1--24.

Cited By

View all
  • (2024)Improving the Precision of Image Search Engines with the Psychological Intention DiagramElectronics10.3390/electronics1301020813:1(208)Online publication date: 2-Jan-2024
  • (2024)DQG: Database Question Generation for Exact Text-based Image RetrievalProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681469(7424-7433)Online publication date: 28-Oct-2024
  • (2024)Graph Convolution Based Efficient Re-Ranking for Visual RetrievalIEEE Transactions on Multimedia10.1109/TMM.2023.327616726(1089-1101)Online publication date: 1-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 46, Issue 3
January 2014
507 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/2578702
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 January 2014
Accepted: 01 August 2013
Revised: 01 July 2013
Received: 01 June 2012
Published in CSUR Volume 46, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Multimedia information retrieval
  2. search re-ranking
  3. survey
  4. visual search

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)61
  • Downloads (Last 6 weeks)3
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Improving the Precision of Image Search Engines with the Psychological Intention DiagramElectronics10.3390/electronics1301020813:1(208)Online publication date: 2-Jan-2024
  • (2024)DQG: Database Question Generation for Exact Text-based Image RetrievalProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681469(7424-7433)Online publication date: 28-Oct-2024
  • (2024)Graph Convolution Based Efficient Re-Ranking for Visual RetrievalIEEE Transactions on Multimedia10.1109/TMM.2023.327616726(1089-1101)Online publication date: 1-Jan-2024
  • (2024)Fix the Tests: Augmenting LLMs to Repair Test Cases with Static Collector and Neural Reranker2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE)10.1109/ISSRE62328.2024.00043(367-378)Online publication date: 28-Oct-2024
  • (2024)Cliprerank: An Extremely Simple Method For Improving Ad-Hoc Video SearchICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)10.1109/ICASSP48485.2024.10446902(7850-7854)Online publication date: 14-Apr-2024
  • (2024)An overview of aggregation methods for social networks analysisKnowledge and Information Systems10.1007/s10115-024-02296-zOnline publication date: 12-Dec-2024
  • (2024)Dual graph-structured semantics multi-subspace learning for cross-modal retrievalMultimedia Systems10.1007/s00530-024-01471-030:5Online publication date: 27-Sep-2024
  • (2024)Thumbnail Personalization in Movie Recommender SystemCommunication and Intelligent Systems10.1007/978-981-97-2079-8_22(277-296)Online publication date: 11-May-2024
  • (2023)Lightweight and Privacy-Preserving Multi-Keyword Search over Outsourced DataApplied Sciences10.3390/app1305284713:5(2847)Online publication date: 22-Feb-2023
  • (2023)Recallable Question Answering-Based Re-Ranking Considering Semantic Region for Cross-Modal RetrievalIEEE Open Journal of Signal Processing10.1109/OJSP.2023.32382804(1-11)Online publication date: 2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media