skip to main content
10.1145/2536853.2536898acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmommConference Proceedingsconference-collections
research-article

Autonomous Flight using a Smartphone as On-Board Processing Unit in GPS-Denied Environments

Authors Info & Claims
Published:02 December 2013Publication History

ABSTRACT

In this paper, we present a low-weight and low-cost Unmanned Aerial Vehicle (UAV) for autonomous flight and navigation in GPS-denied environments using an off-the-shelf smartphone as its core on-board processing unit. Thereby, our approach is independent from additional ground hardware and the UAV core unit can be easily replaced with more powerful hardware that simplifies setup updates as well as maintenance. The UAV is able to map, locate and navigate in an unknown indoor environment fusing vision based tracking with inertial and attitude measurements. We choose an algorithmic approach for mapping and localization that does not require GPS coverage of the target area, therefore autonomous indoor navigation is made possible. We demonstrate the UAVs capabilities of mapping, localization and navigation in an unknown 2D marker environment. Our promising results enable future research on 3D self-localization and dense mapping using mobile hardware as the only on-board processing unit.

References

  1. M. Achtelik, S. Weiss, and R. Siegwart. Onboard IMU and Monocular Vision based Control for MAVs in Unknown In- and Outdoor Environments. In IEEE International Conference on Robotics and Automation, pages 3056--3063, Shanghai, China, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Achtelik, T. Zhang, K. Kuhnlenz, and M. Buss. Visual Tracking and Control of a Quadcopter using a Stereo Camera System and Inertial Sensors. In International Conference on Mechatronics and Automation, pages 2863--2869, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  3. AeroQuad. The Open Source Multicopter. {Online} http://www.aeroquad.com/, Apr. 2013.Google ScholarGoogle Scholar
  4. Arduino. {Online} http://www.arduino.cc/, Apr. 2013.Google ScholarGoogle Scholar
  5. Ascending Technologies GmbH. {Online} http://www.asctec.de/, Feb. 2013.Google ScholarGoogle Scholar
  6. R. Büchi and P. Dauner. Fascination Quadrocopter: Basics - Electronics - Flight Experience. Vth-Fachbuch. Verlag f.Technik/Handwerk, 2010.Google ScholarGoogle Scholar
  7. J. Eckert, R. German, and F. Dressler. An Indoor Localization Framework for Four-Rotor Flying Robots Using Low-Power Sensor Nodes. IEEE Transactions on Instrumentation and Measurement, 60(2):336--344, Feb. 2011.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Erhard, K. E. Wenzel, and A. Zell. Flyphone: Visual Self-Localisation Using a Mobile Phone as Onboard Image Processor on a Quadrocopter. Journal of Intelligent and Robotic Systems, 57(1-4):451--465, Sept. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Google Inc. Android NDK. {Software} Revision 8e http://developer.android.com/tools/sdk/ndk/, Jan. 2013.Google ScholarGoogle Scholar
  10. Google Inc. Android SDK. {Software} Version 4.0.3 http://developer.android.com/sdk/, Jan. 2013.Google ScholarGoogle Scholar
  11. S. Grzonka, G. Grisetti, and W. Burgard. Towards a Navigation System for Autonomous Indoor Flying. In IEEE International Conference on Robotics and Automation, ICRA '09, pages 2878--2883, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Hertzberg, K. Lingemann, and A. Nüchter. Mobile Roboter: Eine Einführung aus Sicht der Informatik. Springer, 2012.Google ScholarGoogle Scholar
  13. A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy. Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. In International Symposium on Robotics Research (ISRR), Flagstaff, Arizona, USA, Aug. 2011.Google ScholarGoogle Scholar
  14. G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR Workspaces. In International Symposium on Mixed and Augmented Reality, pages 225--234, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Klose, M. Achtelik, G. Panin, F. Holzapfel, and A. Knoll. Markerless, Vision-assisted Flight Control of a Quadrocopter. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5712--5717, Oct. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  16. H. Lim, H. Lee, and H. J. Kim. Onboard Flight Control of a Micro Quadrotor using Single Strapdown Optical Flow Sensor. In International Conference on Intelligent Robots and Systems, pages 495--500, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys. PIXHAWK: A System for Autonomous Flight using Onboard Computer Vision. In IEEE International Conference on Robotics and Automation, pages 2992--2997, Shanghai, China, May 2011.Google ScholarGoogle ScholarCross RefCross Ref
  18. Parrot SA. Parrot ARDrone. {Online} http://ardrone2.parrot.com/, Apr. 2013.Google ScholarGoogle Scholar
  19. Qualcomm Inc. Vuforia SDK. {Software} Version 1.5.9 https://developer.vuforia.com/resources/sdk/android/, Jan. 2013.Google ScholarGoogle Scholar
  20. S. Shen, N. Michael, and V. Kumar. Autonomous Multi-Floor Indoor Navigation with a Computationally Constrained MAV. In IEEE International Conference on Robotics and Automation, pages 20--25, Shanghai, China, May 2011.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Weiss, D. Scaramuzza, and R. Siegwart. Monocular-SLAM-based Navigation for Autonomous Micro Helicopters in GPS-denied Environments. Journal of Field Robotics, 28(6):854--874, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Willow Garage Inc. Robot Operating System. {Online} http://www.willowgarage.com/pages/software/ros-platform/, Feb. 2013.Google ScholarGoogle Scholar
  23. T. Zhang, Y. Kang, M. Achtelik, K. Kuhnlenz, and M. Buss. Autonomous Hovering of a Vision/IMU guided Quadrotor. In International Conference on Mechatronics and Automation, pages 2870--2875, 2009.Google ScholarGoogle Scholar

Index Terms

  1. Autonomous Flight using a Smartphone as On-Board Processing Unit in GPS-Denied Environments

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          MoMM '13: Proceedings of International Conference on Advances in Mobile Computing & Multimedia
          December 2013
          599 pages
          ISBN:9781450321068
          DOI:10.1145/2536853

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 December 2013

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader